summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-03-29 10:06:12 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-03-29 10:06:12 +0100
commitc5ec741a258577386f30ad2577141ce498f6310c (patch)
tree143954985bf223b06bbeb9d8c27d64d18a52c706 /lib/dfatool.py
parent8b6735c64b48153c5bf39536489834174edbd334 (diff)
argument-aware analysis of protocolmodeling cycles benchmarks
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py15
1 files changed, 14 insertions, 1 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 5af6cc8..d998dbb 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -888,6 +888,13 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi
'results' : results
}
+def _num_args_from_by_name(by_name):
+ num_args = dict()
+ for key, value in by_name.items():
+ if 'args' in value:
+ num_args[key] = len(value['args'][0])
+ return num_args
+
class AnalyticModel:
u"""
Parameter-aware analytic energy/data size/... model.
@@ -941,8 +948,9 @@ class AnalyticModel:
self.names = sorted(by_name.keys())
self.parameters = sorted(parameters)
self.verbose = verbose
+ self._num_args = _num_args_from_by_name(by_name)
- self.stats = ParamStats(self.by_name, self.by_param, self.parameters, {}, verbose = verbose)
+ self.stats = ParamStats(self.by_name, self.by_param, self.parameters, self._num_args, verbose = verbose)
def _fit(self):
paramfit = ParallelParamFit(self.by_param)
@@ -1124,6 +1132,10 @@ class AnalyticModel:
'by_name' : detailed_results,
}
+ def to_json(self):
+ # TODO
+ pass
+
def _add_trace_data_to_aggregate(aggregate, key, element):
# Only cares about element['isa'], element['offline_aggregates'], and
@@ -1157,6 +1169,7 @@ def pta_trace_to_aggregate(traces, ignore_trace_indexes = []):
- name: str Name
- isa: str state // transition
- parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
+ - args: [ Funktionsargumente, falls isa == 'transition' ]
- offline_aggregates:
- power: [float(uW)] Mittlere Leistung während Zustand/Transitions
- power_std: [float(uW^2)] Standardabweichung der Leistung