diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2020-04-29 08:58:14 +0200 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2020-04-29 08:58:34 +0200 |
commit | 2747d21d4db8f4f123874743dfce512d0cabc875 (patch) | |
tree | 01561b0505a786455b264a126ce9b89c04b61ca7 /lib/dfatool.py | |
parent | 0ec4c9ccfaae15b3ba5db74a8fdddc07adf20eb9 (diff) |
move running_mean helper from dfatool to utils
Diffstat (limited to 'lib/dfatool.py')
-rw-r--r-- | lib/dfatool.py | 13 |
1 files changed, 1 insertions, 12 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 607028e..b206250 100644 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -16,7 +16,7 @@ from functions import analytic from functions import AnalyticFunction from parameters import ParamStats from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple -from utils import by_name_to_by_param, match_parameter_values +from utils import by_name_to_by_param, match_parameter_values, running_mean try: from pubcode import Code128 @@ -29,17 +29,6 @@ except ImportError: arg_support_enabled = True -def running_mean(x: np.ndarray, N: int) -> np.ndarray: - """ - Compute `N` elements wide running average over `x`. - - :param x: 1-Dimensional NumPy array - :param N: how many items to average - """ - cumsum = np.cumsum(np.insert(x, 0, 0)) - return (cumsum[N:] - cumsum[:-N]) / N - - def gplearn_to_function(function_str: str): """ Convert gplearn-style function string to Python function. |