summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-02-14 09:53:31 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-02-14 09:53:31 +0100
commitd5ec05c3d05b560de331237a7d227965d5c398b1 (patch)
tree0f98d3eed5a29a6807359b5052c2ba717a776234 /lib/dfatool.py
parent2cc46a9411f5545128cca800eb657dd6cb338f4e (diff)
do not print paramstats warning during crossvalidation
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index c4529ce..38e140d 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -413,7 +413,7 @@ def _preprocess_measurement(measurement):
class ParamStats:
- def __init__(self, by_name, by_param, parameter_names, arg_count, use_corrcoef = False):
+ def __init__(self, by_name, by_param, parameter_names, arg_count, use_corrcoef = False, verbose = False):
"""
Compute standard deviation and correlation coefficient on parameterized data partitions.
@@ -444,7 +444,7 @@ class ParamStats:
for state_or_tran in by_name.keys():
self.stats[state_or_tran] = dict()
for attribute in by_name[state_or_tran]['attributes']:
- self.stats[state_or_tran][attribute] = compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute)
+ self.stats[state_or_tran][attribute] = compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute, verbose = verbose)
def _generic_param_independence_ratio(self, state_or_trans, attribute):
"""
@@ -950,7 +950,7 @@ class AnalyticModel:
self.parameters = sorted(parameters)
self.verbose = verbose
- self.stats = ParamStats(self.by_name, self.by_param, self.parameters, {})
+ self.stats = ParamStats(self.by_name, self.by_param, self.parameters, {}, verbose = verbose)
def _fit(self):
paramfit = ParallelParamFit(self.by_param)
@@ -1319,7 +1319,7 @@ class PTAModel:
self._num_args = arg_count
self._use_corrcoef = use_corrcoef
self.traces = traces
- self.stats = ParamStats(self.by_name, self.by_param, self._parameter_names, self._num_args, self._use_corrcoef)
+ self.stats = ParamStats(self.by_name, self.by_param, self._parameter_names, self._num_args, self._use_corrcoef, verbose = verbose)
self.cache = {}
np.seterr('raise')
self._outlier_threshold = discard_outliers