summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-02-07 10:58:05 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-02-07 10:58:49 +0100
commit32a38a781f55453b4fe7c480a1d118834f2f236d (patch)
treee17ca4c484a1b158c5e0b8d779e7fc65ea3d95bd /lib/dfatool.py
parentcfe740a107964c805451ad0a59eeff0049d5bac1 (diff)
Rename EnergyModel to PTAModel
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py69
1 files changed, 62 insertions, 7 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 372adee..b71df98 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -249,7 +249,7 @@ class CrossValidation:
def __init__(self, em, num_partitions):
self._em = em
self._num_partitions = num_partitions
- x = EnergyModel.from_model(em.by_name, em._parameter_names)
+ x = PTAModel.from_model(em.by_name, em._parameter_names)
def _preprocess_measurement(measurement):
@@ -397,7 +397,7 @@ class RawData:
Expects a specific trace format and UART log output (as produced by the
dfatool benchmark generator). Loads data, prunes bogus measurements, and
- provides preprocessed data suitable for EnergyModel.
+ provides preprocessed data suitable for PTAModel.
"""
def __init__(self, filenames):
@@ -586,8 +586,8 @@ class RawData:
"""
Return a list of DFA traces annotated with energy, timing, and parameter data.
- Suitable for the EnergyModel constructor.
- See EnergyModel(...) docstring for format details.
+ Suitable for the PTAModel constructor.
+ See PTAModel(...) docstring for format details.
"""
self.verbose = verbose
if self.preprocessed:
@@ -758,14 +758,69 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi
'results' : results
}
-class EnergyModel:
+class AnalyticModel:
u"""
- parameter-aware PTA-based energy model.
+ Parameter-aware analytic energy/data size/... model.
Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.
The model heavily relies on two internal data structures:
- EnergyModel.by_name and EnergyModel.by_param.
+ PTAModel.by_name and PTAModel.by_param.
+
+ These provide measurements aggregated by (function/state/...) name
+ and (for by_param) parameter values. Layout:
+ dictionary with one key per name ('send', 'TX', ...) or
+ one key per name and parameter combination
+ (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
+
+ Parameter values must be ordered corresponding to the lexically sorted parameter names.
+
+ Each element is in turn a dict with the following elements:
+ - param: list of parameter values in each measurement (-> list of lists)
+ - attributes: list of keys that should be analyzed,
+ e.g. ['power', 'duration']
+ - for each attribute mentioned in 'attributes': A list with measurements.
+ All list except for 'attributes' must have the same length.
+ """
+
+ def __init__(self, by_name, by_param, parameters):
+ self.by_name = by_name
+ self.by_param = by_param
+ self.parameters = sorted(parameters)
+
+ self.stats = ParamStats(self.by_name, self.by_param, self.parameters)
+
+ def _fit(self):
+ paramfit = ParallelParamFit(self.by_param)
+
+ for name in self.by_name.keys():
+ for attribute in self.by_name[fname]['attributes']:
+ for param_index, param in enumerate(self.parameters):
+ ratio = self.stats.param_dependence_ratio(fname, attribute, param)
+ if self.stats.depends_on_param(fname, attribute, param):
+ paramfit.enqueue(fname, attribute, param_index, param, False)
+
+ paramfit.fit()
+
+ for name in self.by_name.keys():
+ for attribute in self.by_name[fname]['attributes']:
+ fit_result = {}
+ for result in paramfit.results:
+ if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None:
+ fit_result[result['key'][2]] = result['result']
+ if len(fit_result.keys()):
+ x = analytic.function_powerset(fit_result, parameters)
+ x.fit(by_param, fname, attribute)
+
+
+class PTAModel:
+ u"""
+ Parameter-aware PTA-based energy model.
+
+ Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.
+
+ The model heavily relies on two internal data structures:
+ PTAModel.by_name and PTAModel.by_param.
These provide measurements aggregated by state/transition name
and (in case of by_para) parameter values. Layout: