diff options
author | Daniel Friesel <derf@finalrewind.org> | 2019-02-07 10:58:05 +0100 |
---|---|---|
committer | Daniel Friesel <derf@finalrewind.org> | 2019-02-07 10:58:49 +0100 |
commit | 32a38a781f55453b4fe7c480a1d118834f2f236d (patch) | |
tree | e17ca4c484a1b158c5e0b8d779e7fc65ea3d95bd /lib/dfatool.py | |
parent | cfe740a107964c805451ad0a59eeff0049d5bac1 (diff) |
Rename EnergyModel to PTAModel
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-x | lib/dfatool.py | 69 |
1 files changed, 62 insertions, 7 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 372adee..b71df98 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -249,7 +249,7 @@ class CrossValidation: def __init__(self, em, num_partitions): self._em = em self._num_partitions = num_partitions - x = EnergyModel.from_model(em.by_name, em._parameter_names) + x = PTAModel.from_model(em.by_name, em._parameter_names) def _preprocess_measurement(measurement): @@ -397,7 +397,7 @@ class RawData: Expects a specific trace format and UART log output (as produced by the dfatool benchmark generator). Loads data, prunes bogus measurements, and - provides preprocessed data suitable for EnergyModel. + provides preprocessed data suitable for PTAModel. """ def __init__(self, filenames): @@ -586,8 +586,8 @@ class RawData: """ Return a list of DFA traces annotated with energy, timing, and parameter data. - Suitable for the EnergyModel constructor. - See EnergyModel(...) docstring for format details. + Suitable for the PTAModel constructor. + See PTAModel(...) docstring for format details. """ self.verbose = verbose if self.preprocessed: @@ -758,14 +758,69 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi 'results' : results } -class EnergyModel: +class AnalyticModel: u""" - parameter-aware PTA-based energy model. + Parameter-aware analytic energy/data size/... model. Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence. The model heavily relies on two internal data structures: - EnergyModel.by_name and EnergyModel.by_param. + PTAModel.by_name and PTAModel.by_param. + + These provide measurements aggregated by (function/state/...) name + and (for by_param) parameter values. Layout: + dictionary with one key per name ('send', 'TX', ...) or + one key per name and parameter combination + (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...). + + Parameter values must be ordered corresponding to the lexically sorted parameter names. + + Each element is in turn a dict with the following elements: + - param: list of parameter values in each measurement (-> list of lists) + - attributes: list of keys that should be analyzed, + e.g. ['power', 'duration'] + - for each attribute mentioned in 'attributes': A list with measurements. + All list except for 'attributes' must have the same length. + """ + + def __init__(self, by_name, by_param, parameters): + self.by_name = by_name + self.by_param = by_param + self.parameters = sorted(parameters) + + self.stats = ParamStats(self.by_name, self.by_param, self.parameters) + + def _fit(self): + paramfit = ParallelParamFit(self.by_param) + + for name in self.by_name.keys(): + for attribute in self.by_name[fname]['attributes']: + for param_index, param in enumerate(self.parameters): + ratio = self.stats.param_dependence_ratio(fname, attribute, param) + if self.stats.depends_on_param(fname, attribute, param): + paramfit.enqueue(fname, attribute, param_index, param, False) + + paramfit.fit() + + for name in self.by_name.keys(): + for attribute in self.by_name[fname]['attributes']: + fit_result = {} + for result in paramfit.results: + if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None: + fit_result[result['key'][2]] = result['result'] + if len(fit_result.keys()): + x = analytic.function_powerset(fit_result, parameters) + x.fit(by_param, fname, attribute) + + +class PTAModel: + u""" + Parameter-aware PTA-based energy model. + + Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence. + + The model heavily relies on two internal data structures: + PTAModel.by_name and PTAModel.by_param. These provide measurements aggregated by state/transition name and (in case of by_para) parameter values. Layout: |