summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-07-06 15:28:07 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-07-06 15:28:07 +0200
commit2a4ee78fd4c8b57f759135e068d85cf730b2e268 (patch)
tree1495e9a11d56d0b4b3b2f478fec83ee229c00241 /lib/dfatool.py
parentf8d1ec53748231a97c4591da31310f73711ec5a8 (diff)
move gplearn_to_function to functions module
Diffstat (limited to 'lib/dfatool.py')
-rw-r--r--lib/dfatool.py47
1 files changed, 0 insertions, 47 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 07aa7b3..47ce24e 100644
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -27,53 +27,6 @@ except ImportError:
arg_support_enabled = True
-def gplearn_to_function(function_str: str):
- """
- Convert gplearn-style function string to Python function.
-
- Takes a function string like "mul(add(X0, X1), X2)" and returns
- a Python function implementing the specified behaviour,
- e.g. "lambda x, y, z: (x + y) * z".
-
- Supported functions:
- add -- x + y
- sub -- x - y
- mul -- x * y
- div -- x / y if |y| > 0.001, otherwise 1
- sqrt -- sqrt(|x|)
- log -- log(|x|) if |x| > 0.001, otherwise 0
- inv -- 1 / x if |x| > 0.001, otherwise 0
- """
- eval_globals = {
- "add": lambda x, y: x + y,
- "sub": lambda x, y: x - y,
- "mul": lambda x, y: x * y,
- "div": lambda x, y: np.divide(x, y) if np.abs(y) > 0.001 else 1.0,
- "sqrt": lambda x: np.sqrt(np.abs(x)),
- "log": lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 0.0,
- "inv": lambda x: 1.0 / x if np.abs(x) > 0.001 else 0.0,
- }
-
- last_arg_index = 0
- for i in range(0, 100):
- if function_str.find("X{:d}".format(i)) >= 0:
- last_arg_index = i
-
- arg_list = []
- for i in range(0, last_arg_index + 1):
- arg_list.append("X{:d}".format(i))
-
- eval_str = "lambda {}, *whatever: {}".format(",".join(arg_list), function_str)
- logger.debug(eval_str)
- return eval(eval_str, eval_globals)
-
-
-def append_if_set(aggregate: dict, data: dict, key: str):
- """Append data[key] to aggregate if key in data."""
- if key in data:
- aggregate.append(data[key])
-
-
def mean_or_none(arr):
"""
Compute mean of NumPy array `arr`, return -1 if empty.