summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-02-08 10:15:09 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-02-08 10:15:40 +0100
commit2db31a8adac549f2bdc1d2c204b16bc2f815eff3 (patch)
tree7a338d405e5f9a338c0ee0fa1afbd8b4283a7c5d /lib/dfatool.py
parent2b479dc993b1d73d236d96a4d57bb69159b1603e (diff)
Convert PTAModel to EnergyModel signature
outlier detection / removal is not supported at the moment.
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py140
1 files changed, 46 insertions, 94 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index e9af2af..634424b 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -1014,6 +1014,36 @@ class AnalyticModel:
return detailed_results
+def _add_trace_data_to_aggregate(aggregate, key, element):
+ if not key in aggregate:
+ aggregate[key] = {
+ 'isa' : element['isa']
+ }
+ for datakey in element['offline_aggregates'].keys():
+ aggregate[key][datakey] = []
+ if element['isa'] == 'state':
+ aggregate[key]['attributes'] = ['power']
+ else:
+ aggregate[key]['attributes'] = ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']
+ if element['plan']['level'] == 'epilogue':
+ aggregate[key]['attributes'].insert(0, 'timeout')
+ for datakey, dataval in element['offline_aggregates'].items():
+ aggregate[key][datakey].extend(dataval)
+
+def pta_trace_to_aggregate(traces, ignore_trace_indexes = []):
+ arg_count = dict()
+ by_name = dict()
+ parameter_names = sorted(traces[0]['trace'][0]['parameter'].keys())
+ for run in traces:
+ if run['id'] not in ignore_trace_indexes:
+ for elem in run['trace']:
+ if elem['isa'] == 'transition' and not elem['name'] in arg_count and 'args' in elem:
+ arg_count[elem['name']] = len(elem['args'])
+ if elem['name'] != 'UNINITIALIZED':
+ _add_trace_data_to_aggregate(by_name, elem['name'], elem)
+ return by_name, parameter_names, arg_count
+
+
class PTAModel:
u"""
Parameter-aware PTA-based energy model.
@@ -1046,7 +1076,7 @@ class PTAModel:
- rel_energy_next: transition energy relative to next state mean power in pJ
"""
- def __init__(self, preprocessed_data, ignore_trace_indexes = [], discard_outliers = None, function_override = {}, verbose = True, use_corrcoef = False, hwmodel = None):
+ def __init__(self, by_name, parameters, arg_count, traces = [], ignore_trace_indexes = [], discard_outliers = None, function_override = {}, verbose = True, use_corrcoef = False, hwmodel = None):
"""
Prepare a new PTA energy model.
@@ -1135,29 +1165,19 @@ class PTAModel:
]
]
"""
- self.traces = preprocessed_data
- self.by_name = {}
- self.by_param = {}
- self.by_trace = {}
+ self.by_name = by_name
+ self.by_param = by_name_to_by_param(by_name)
+ self._parameter_names = sorted(parameters)
+ self._num_args = arg_count
+ self.traces = traces
self.cache = {}
np.seterr('raise')
- self._parameter_names = sorted(self.traces[0]['trace'][0]['parameter'].keys())
- self._num_args = {}
self._outlier_threshold = discard_outliers
self._use_corrcoef = use_corrcoef
self.function_override = function_override
self.verbose = verbose
self.hwmodel = hwmodel
self.ignore_trace_indexes = ignore_trace_indexes
- if discard_outliers != None:
- self._compute_outlier_stats(ignore_trace_indexes, discard_outliers)
- for run in self.traces:
- if run['id'] not in ignore_trace_indexes:
- for i, elem in enumerate(run['trace']):
- if elem['name'] != 'UNINITIALIZED':
- self._load_run_elem(i, elem)
- if elem['isa'] == 'transition' and not elem['name'] in self._num_args and 'args' in elem:
- self._num_args[elem['name']] = len(elem['args'])
self._aggregate_to_ndarray(self.by_name)
self._compute_all_param_statistics()
@@ -1166,86 +1186,14 @@ class PTAModel:
param_values = map(lambda x: x[param_index], self.by_name[state_or_tran]['param'])
return sorted(set(param_values))
- def _compute_outlier_stats(self, ignore_trace_indexes, threshold):
- tmp_by_param = {}
- self.median_by_param = {}
- for run in self.traces:
- if run['id'] not in ignore_trace_indexes:
- for i, elem in enumerate(run['trace']):
- key = (elem['name'], tuple(_elem_param_and_arg_list(elem)))
- if not key in tmp_by_param:
- tmp_by_param[key] = {}
- for attribute in elem['offline_attributes']:
- tmp_by_param[key][attribute] = []
- for attribute in elem['offline_attributes']:
- tmp_by_param[key][attribute].extend(elem['offline_aggregates'][attribute])
- for key, elem in tmp_by_param.items():
- if not key in self.median_by_param:
- self.median_by_param[key] = {}
- for attribute in tmp_by_param[key].keys():
- self.median_by_param[key][attribute] = np.median(tmp_by_param[key][attribute])
-
-
def _compute_all_param_statistics(self):
self.stats = ParamStats(self.by_name, self.by_param, self._parameter_names, self._num_args, self._use_corrcoef)
- @classmethod
- def from_model(self, model_data, parameter_names):
- self.by_name = {}
- self.by_param = {}
- np.seterr('raise')
- self._parameter_names = parameter_names
- for state_or_tran, values in model_data.items():
- for elem in values:
- self._load_agg_elem(state_or_tran, elem)
- #if elem['isa'] == 'transition' and not state_or_tran in self._num_args and 'args' in elem:
- # self._num_args = len(elem['args'])
- self._aggregate_to_ndarray(self.by_name)
- self._compute_all_param_statistics()
-
def _aggregate_to_ndarray(self, aggregate):
for elem in aggregate.values():
for key in elem['attributes']:
elem[key] = np.array(elem[key])
- def _prune_outliers(self, key, attribute, data):
- if self._outlier_threshold == None:
- return data
- median = self.median_by_param[key][attribute]
- if np.median(np.abs(data - median)) == 0:
- return data
- pruned_data = list(filter(lambda x: np.abs(0.6745 * (x - median) / np.median(np.abs(data - median))) > self._outlier_threshold, data ))
- if len(pruned_data):
- vprint(self.verbose, '[I] Pruned outliers from ({}) {}: {}'.format(key, attribute, pruned_data))
- data = list(filter(lambda x: np.abs(0.6745 * (x - median) / np.median(np.abs(data - median))) <= self._outlier_threshold, data ))
- return data
-
- def _add_data_to_aggregate(self, aggregate, key, element):
- if not key in aggregate:
- aggregate[key] = {
- 'isa' : element['isa']
- }
- for datakey in element['offline_aggregates'].keys():
- aggregate[key][datakey] = []
- if element['isa'] == 'state':
- aggregate[key]['attributes'] = ['power']
- else:
- aggregate[key]['attributes'] = ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']
- if element['plan']['level'] == 'epilogue':
- aggregate[key]['attributes'].insert(0, 'timeout')
- for datakey, dataval in element['offline_aggregates'].items():
- if datakey in element['offline_attributes']:
- dataval = self._prune_outliers((element['name'], tuple(_elem_param_and_arg_list(element))), datakey, dataval)
- aggregate[key][datakey].extend(dataval)
-
- def _load_agg_elem(self, name, elem):
- self._add_data_to_aggregate(self.by_name, name, elem)
- self._add_data_to_aggregate(self.by_param, (name, tuple(elem['param'])), elem)
-
- def _load_run_elem(self, i, elem):
- self._add_data_to_aggregate(self.by_name, elem['name'], elem)
- self._add_data_to_aggregate(self.by_param, (elem['name'], tuple(_elem_param_and_arg_list(elem))), elem)
-
# This heuristic is very similar to the "function is not much better than
# median" checks in get_fitted. So far, doing it here as well is mostly
# a performance and not an algorithm quality decision.
@@ -1475,13 +1423,17 @@ class PTAModel:
real_timeout_list.append(real_timeout)
model_timeout_list.append(model_timeout)
+ if len(self.traces):
+ return {
+ 'by_dfa_component' : detailed_results,
+ 'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
+ 'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
+ 'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
+ 'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
+ 'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)),
+ }
return {
- 'by_dfa_component' : detailed_results,
- 'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
- 'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
- 'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
- 'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
- 'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)),
+ 'by_dfa_component' : detailed_results
}