diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2020-11-02 10:11:08 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2020-11-02 10:11:08 +0100 |
commit | c179546f74807882f4dff47c8a969741f2dba1a7 (patch) | |
tree | 946a068fc4fb4f705678895e405b3b27990a49d9 /lib/lennart/DataProcessor.py | |
parent | 081247660357c8f63fdaaf363c29d1b95a86b842 (diff) | |
parent | dd33d9b36dd071d04ccba5a000e9562c2b6a4a31 (diff) |
Merge branch 'master' into merge-prep/janis
Diffstat (limited to 'lib/lennart/DataProcessor.py')
-rw-r--r-- | lib/lennart/DataProcessor.py | 415 |
1 files changed, 415 insertions, 0 deletions
diff --git a/lib/lennart/DataProcessor.py b/lib/lennart/DataProcessor.py new file mode 100644 index 0000000..b46315a --- /dev/null +++ b/lib/lennart/DataProcessor.py @@ -0,0 +1,415 @@ +import numpy as np +import logging + +logger = logging.getLogger(__name__) + + +class DataProcessor: + def __init__(self, sync_data, energy_data): + """ + Creates DataProcessor object. + + :param sync_data: input timestamps (SigrokResult) + :param energy_data: List of EnergyTrace datapoints + """ + self.reduced_timestamps = [] + self.modified_timestamps = [] + self.plot_data_x = [] + self.plot_data_y = [] + self.sync_data = sync_data + self.energy_data = energy_data + self.start_offset = 0 + + self.power_sync_watt = 0.011 + self.power_sync_len = 0.7 + self.power_sync_max_outliers = 2 + + def run(self): + """ + Main Function to remove unwanted data, get synchronization points, add the offset and add drift. + :return: None + """ + # remove Dirty Data from previously running program (happens if logic Analyzer Measurement starts earlier than + # the HW Reset from energytrace) + use_data_after_index = 0 + for x in range(1, len(self.sync_data.timestamps)): + if self.sync_data.timestamps[x] - self.sync_data.timestamps[x - 1] > 1.3: + use_data_after_index = x + break + + time_stamp_data = self.sync_data.timestamps[use_data_after_index:] + + last_data = [0, 0, 0, 0] + + # clean timestamp data, if at the end strange ts got added somehow + # time_stamp_data = self.removeTooFarDatasets(time_stamp_data) + + self.reduced_timestamps = time_stamp_data + + # NEW + datasync_timestamps = [] + sync_start = 0 + outliers = 0 + pre_outliers_ts = None + # TODO only consider the first few and the last few seconds for sync points + for i, energytrace_dataset in enumerate(self.energy_data): + usedtime = energytrace_dataset[0] - last_data[0] # in microseconds + timestamp = energytrace_dataset[0] + usedenergy = energytrace_dataset[3] - last_data[3] + power = usedenergy / usedtime * 1e-3 # in watts + if power > 0: + if power > self.power_sync_watt: + if sync_start is None: + sync_start = timestamp + outliers = 0 + else: + # Sync point over or outliers + if outliers == 0: + pre_outliers_ts = timestamp + outliers += 1 + if outliers > self.power_sync_max_outliers: + if sync_start is not None: + if ( + pre_outliers_ts - sync_start + ) / 1_000_000 > self.power_sync_len: + datasync_timestamps.append( + ( + sync_start / 1_000_000, + pre_outliers_ts / 1_000_000, + ) + ) + sync_start = None + + last_data = energytrace_dataset + + self.plot_data_x.append(timestamp / 1_000_000) + self.plot_data_y.append(power) + + if power > self.power_sync_watt: + if (self.energy_data[-1][0] - sync_start) / 1_000_000 > self.power_sync_len: + datasync_timestamps.append( + (sync_start / 1_000_000, pre_outliers_ts / 1_000_000) + ) + + # print(datasync_timestamps) + + # time_stamp_data contains an entry for each level change on the Logic Analyzer input. + # So, time_stamp_data[0] is the first low-to-high transition, time_stamp_data[2] the second, etc. + # -> time_stamp_data[2] is the low-to-high transition indicating the end of the first sync pulse + # -> time_stamp_data[-8] is the low-to-high transition indicating the start of the first after-measurement sync pulse + + start_timestamp = datasync_timestamps[0][1] + start_offset = start_timestamp - time_stamp_data[2] + + end_timestamp = datasync_timestamps[-2][0] + end_offset = end_timestamp - (time_stamp_data[-8] + start_offset) + logger.debug( + f"Measurement area: ET timestamp range [{start_timestamp}, {end_timestamp}]" + ) + logger.debug( + f"Measurement area: LA timestamp range [{time_stamp_data[2]}, {time_stamp_data[-8]}]" + ) + logger.debug(f"Start/End offsets: {start_offset} / {end_offset}") + + if end_offset > 10: + logger.warning( + f"synchronization end_offset == {end_offset}. It should be no more than a few seconds." + ) + + with_offset = np.array(time_stamp_data) + start_offset + logger.debug( + f"Measurement area with offset: LA timestamp range [{with_offset[2]}, {with_offset[-8]}]" + ) + + with_drift = self.addDrift( + with_offset, end_timestamp, end_offset, start_timestamp + ) + logger.debug( + f"Measurement area with drift: LA timestamp range [{with_drift[2]}, {with_drift[-8]}]" + ) + + self.modified_timestamps = with_drift + + def removeTooFarDatasets(self, input_timestamps): + """ + Removing datasets, that are to far away at ethe end + + :param input_timestamps: List of timestamps (float list) + :return: List of modified timestamps (float list) + """ + modified_timestamps = [] + for i, x in enumerate(input_timestamps): + # print(x - input_timestamps[i - 1], x - input_timestamps[i - 1] < 2.5) + if x - input_timestamps[i - 1] < 1.6: + modified_timestamps.append(x) + else: + break + return modified_timestamps + + def addDrift(self, input_timestamps, end_timestamp, end_offset, start_timestamp): + """ + Add drift to datapoints + + :param input_timestamps: List of timestamps (float list) + :param end_timestamp: Timestamp of first EnergyTrace datapoint at the second-to-last sync point + :param end_offset: the time between end_timestamp and the timestamp of synchronisation signal + :param start_timestamp: Timestamp of last EnergyTrace datapoint at the first sync point + :return: List of modified timestamps (float list) + """ + endFactor = 1 + (end_offset / ((end_timestamp - end_offset) - start_timestamp)) + # print( + # f"({end_timestamp} + {end_offset} - {start_timestamp}) / ({end_timestamp} - {start_timestamp}) == {endFactor}" + # ) + # Manuelles endFactor += 0.0001 macht es merklich besser + # print(f"endFactor = {endFactor}") + # endFactor assumes that the end of the first sync pulse is at timestamp 0. + # Then, timestamps with drift := timestamps * endFactor. + # As this is not the case (the first sync pulse ends at start_timestamp > 0), we shift the data by first + # removing start_timestamp, then multiplying with endFactor, and then re-adding the start_timestamp. + modified_timestamps_with_drift = ( + input_timestamps - start_timestamp + ) * endFactor + start_timestamp + return modified_timestamps_with_drift + + def export_sync(self): + # [1st trans start, 1st trans stop, 2nd trans start, 2nd trans stop, ...] + sync_timestamps = list() + + for i in range(4, len(self.modified_timestamps) - 8, 2): + sync_timestamps.append( + (self.modified_timestamps[i], self.modified_timestamps[i + 1]) + ) + + # EnergyTrace timestamps + timestamps = self.plot_data_x + + # EnergyTrace power values + power = self.plot_data_y + + return {"sync": sync_timestamps, "timestamps": timestamps, "power": power} + + def plot(self, annotateData=None): + """ + Plots the power usage and the timestamps by logic analyzer + + :param annotateData: List of Strings with labels, only needed if annotated plots are wished + :return: None + """ + + def calculateRectangleCurve(timestamps, min_value=0, max_value=0.160): + import numpy as np + + data = [] + for ts in timestamps: + data.append(ts) + data.append(ts) + + a = np.empty((len(data),)) + a[0::4] = min_value + a[1::4] = max_value + a[2::4] = max_value + a[3::4] = min_value + return data, a # plotting by columns + + import matplotlib.pyplot as plt + + fig, ax = plt.subplots() + + if annotateData: + annot = ax.annotate( + "", + xy=(0, 0), + xytext=(20, 20), + textcoords="offset points", + bbox=dict(boxstyle="round", fc="w"), + arrowprops=dict(arrowstyle="->"), + ) + annot.set_visible(True) + + rectCurve_with_drift = calculateRectangleCurve( + self.modified_timestamps, max_value=max(self.plot_data_y) + ) + + plt.plot(self.plot_data_x, self.plot_data_y, label="Leistung") + + plt.plot( + rectCurve_with_drift[0], + rectCurve_with_drift[1], + "-g", + label="Synchronisationsignale mit Driftfaktor", + ) + + plt.xlabel("Zeit von EnergyTrace [s]") + plt.ylabel("Leistung [W]") + leg = plt.legend() + + def getDataText(x): + # print(x) + dl = len(annotateData) + for i, xt in enumerate(self.modified_timestamps): + if xt > x and i >= 4 and i - 5 < dl: + return f"SoT: {annotateData[i - 5]}" + + def update_annot(x, y, name): + annot.xy = (x, y) + text = name + + annot.set_text(text) + annot.get_bbox_patch().set_alpha(0.4) + + def hover(event): + if event.xdata and event.ydata: + annot.set_visible(False) + update_annot(event.xdata, event.ydata, getDataText(event.xdata)) + annot.set_visible(True) + fig.canvas.draw_idle() + + if annotateData: + fig.canvas.mpl_connect("motion_notify_event", hover) + + plt.show() + + def getPowerBetween(self, start, end, state_sleep): # 0.001469 + """ + calculates the powerusage in interval + NOT SIDE EFFECT FREE, DON'T USE IT EVERYWHERE + + :param start: Start timestamp of interval + :param end: End timestamp of interval + :param state_sleep: Length in seconds of one state, needed for cutting out the UART Sending cycle + :return: power measurements in W + """ + first_index = 0 + all_power = list() + all_ts = list() + for ind in range(self.start_offset, len(self.plot_data_x)): + first_index = ind + if self.plot_data_x[ind] > start: + break + + nextIndAfterIndex = None + for ind in range(first_index, len(self.plot_data_x)): + nextIndAfterIndex = ind + if ( + self.plot_data_x[ind] > end + or self.plot_data_x[ind] > start + state_sleep + ): + self.start_offset = ind - 1 + break + all_power.append(self.plot_data_y[ind]) + all_ts.append(self.plot_data_x[ind]) + + # TODO Idea remove datapoints that are too far away + def removeSD_Mean_Values(arr): + import numpy + + elements = numpy.array(arr) + + mean = numpy.mean(elements, axis=0) + sd = numpy.std(elements, axis=0) + + return [x for x in arr if (mean - 1 * sd < x < mean + 1.5 * sd)] + + if len(all_power) > 10: + # all_power = removeSD_Mean_Values(all_power) + pass + # TODO algorithm relocate datapoint + + pre_fix_len = len(all_power) + if len(all_power) == 0: + # print("PROBLEM") + all_power.append(self.plot_data_y[nextIndAfterIndex]) + all_ts.append(0) + elif len(all_power) == 1: + # print("OKAY") + pass + return np.array(all_power), np.array(all_ts) + + def getStatesdfatool(self, state_sleep, with_traces=False, algorithm=False): + """ + Calculates the length and energy usage of the states + + :param state_sleep: Length in seconds of one state, needed for cutting out the UART Sending cycle + :param algorithm: possible usage of accuracy algorithm / not implemented yet + :returns: returns list of states and transitions, starting with a transition and ending with astate + Each element is a dict containing: + * `isa`: 'state' or 'transition' + * `W_mean`: Mittelwert der Leistungsaufnahme + * `W_std`: Standardabweichung der Leistungsaufnahme + * `s`: Dauer + """ + if algorithm: + raise NotImplementedError + end_transition_ts = None + timestamps_sync_start = 0 + energy_trace_new = list() + + for ts_index in range( + 0 + timestamps_sync_start, int(len(self.modified_timestamps) / 2) + ): + start_transition_ts = self.modified_timestamps[ts_index * 2] + start_transition_ts_timing = self.reduced_timestamps[ts_index * 2] + + if end_transition_ts is not None: + power, timestamps = self.getPowerBetween( + end_transition_ts, start_transition_ts, state_sleep + ) + + # print("STATE", end_transition_ts * 10 ** 6, start_transition_ts * 10 ** 6, (start_transition_ts - end_transition_ts) * 10 ** 6, power) + if ( + (start_transition_ts - end_transition_ts) * 10 ** 6 > 900_000 + and np.mean(power) > self.power_sync_watt * 0.9 + and ts_index > 10 + ): + # remove last transition and stop (upcoming data only sync) + del energy_trace_new[-1] + break + pass + + state = { + "isa": "state", + "W_mean": np.mean(power), + "W_std": np.std(power), + "s": ( + start_transition_ts_timing - end_transition_ts_timing + ), # * 10 ** 6, + } + if with_traces: + state["plot"] = (timestamps - timestamps[0], power) + energy_trace_new.append(state) + + energy_trace_new[-2]["W_mean_delta_next"] = ( + energy_trace_new[-2]["W_mean"] - energy_trace_new[-1]["W_mean"] + ) + + # get energy end_transition_ts + end_transition_ts = self.modified_timestamps[ts_index * 2 + 1] + power, timestamps = self.getPowerBetween( + start_transition_ts, end_transition_ts, state_sleep + ) + + # print("TRANS", start_transition_ts * 10 ** 6, end_transition_ts * 10 ** 6, (end_transition_ts - start_transition_ts) * 10 ** 6, power) + end_transition_ts_timing = self.reduced_timestamps[ts_index * 2 + 1] + + transition = { + "isa": "transition", + "W_mean": np.mean(power), + "W_std": np.std(power), + "s": ( + end_transition_ts_timing - start_transition_ts_timing + ), # * 10 ** 6, + "count_dp": len(power), + } + if with_traces: + transition["plot"] = (timestamps - timestamps[0], power) + + if (end_transition_ts - start_transition_ts) * 10 ** 6 > 2_000_000: + # TODO Last data set corrupted? HOT FIX!!!!!!!!!!!! REMOVE LATER + # for x in range(4): + # del energy_trace_new[-1] + # break + pass + + energy_trace_new.append(transition) + # print(start_transition_ts, "-", end_transition_ts, "-", end_transition_ts - start_transition_ts) + return energy_trace_new |