summaryrefslogtreecommitdiff
path: root/lib/lennart/DataProcessor.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-11-02 10:11:08 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2020-11-02 10:11:08 +0100
commitc179546f74807882f4dff47c8a969741f2dba1a7 (patch)
tree946a068fc4fb4f705678895e405b3b27990a49d9 /lib/lennart/DataProcessor.py
parent081247660357c8f63fdaaf363c29d1b95a86b842 (diff)
parentdd33d9b36dd071d04ccba5a000e9562c2b6a4a31 (diff)
Merge branch 'master' into merge-prep/janis
Diffstat (limited to 'lib/lennart/DataProcessor.py')
-rw-r--r--lib/lennart/DataProcessor.py415
1 files changed, 415 insertions, 0 deletions
diff --git a/lib/lennart/DataProcessor.py b/lib/lennart/DataProcessor.py
new file mode 100644
index 0000000..b46315a
--- /dev/null
+++ b/lib/lennart/DataProcessor.py
@@ -0,0 +1,415 @@
+import numpy as np
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+class DataProcessor:
+ def __init__(self, sync_data, energy_data):
+ """
+ Creates DataProcessor object.
+
+ :param sync_data: input timestamps (SigrokResult)
+ :param energy_data: List of EnergyTrace datapoints
+ """
+ self.reduced_timestamps = []
+ self.modified_timestamps = []
+ self.plot_data_x = []
+ self.plot_data_y = []
+ self.sync_data = sync_data
+ self.energy_data = energy_data
+ self.start_offset = 0
+
+ self.power_sync_watt = 0.011
+ self.power_sync_len = 0.7
+ self.power_sync_max_outliers = 2
+
+ def run(self):
+ """
+ Main Function to remove unwanted data, get synchronization points, add the offset and add drift.
+ :return: None
+ """
+ # remove Dirty Data from previously running program (happens if logic Analyzer Measurement starts earlier than
+ # the HW Reset from energytrace)
+ use_data_after_index = 0
+ for x in range(1, len(self.sync_data.timestamps)):
+ if self.sync_data.timestamps[x] - self.sync_data.timestamps[x - 1] > 1.3:
+ use_data_after_index = x
+ break
+
+ time_stamp_data = self.sync_data.timestamps[use_data_after_index:]
+
+ last_data = [0, 0, 0, 0]
+
+ # clean timestamp data, if at the end strange ts got added somehow
+ # time_stamp_data = self.removeTooFarDatasets(time_stamp_data)
+
+ self.reduced_timestamps = time_stamp_data
+
+ # NEW
+ datasync_timestamps = []
+ sync_start = 0
+ outliers = 0
+ pre_outliers_ts = None
+ # TODO only consider the first few and the last few seconds for sync points
+ for i, energytrace_dataset in enumerate(self.energy_data):
+ usedtime = energytrace_dataset[0] - last_data[0] # in microseconds
+ timestamp = energytrace_dataset[0]
+ usedenergy = energytrace_dataset[3] - last_data[3]
+ power = usedenergy / usedtime * 1e-3 # in watts
+ if power > 0:
+ if power > self.power_sync_watt:
+ if sync_start is None:
+ sync_start = timestamp
+ outliers = 0
+ else:
+ # Sync point over or outliers
+ if outliers == 0:
+ pre_outliers_ts = timestamp
+ outliers += 1
+ if outliers > self.power_sync_max_outliers:
+ if sync_start is not None:
+ if (
+ pre_outliers_ts - sync_start
+ ) / 1_000_000 > self.power_sync_len:
+ datasync_timestamps.append(
+ (
+ sync_start / 1_000_000,
+ pre_outliers_ts / 1_000_000,
+ )
+ )
+ sync_start = None
+
+ last_data = energytrace_dataset
+
+ self.plot_data_x.append(timestamp / 1_000_000)
+ self.plot_data_y.append(power)
+
+ if power > self.power_sync_watt:
+ if (self.energy_data[-1][0] - sync_start) / 1_000_000 > self.power_sync_len:
+ datasync_timestamps.append(
+ (sync_start / 1_000_000, pre_outliers_ts / 1_000_000)
+ )
+
+ # print(datasync_timestamps)
+
+ # time_stamp_data contains an entry for each level change on the Logic Analyzer input.
+ # So, time_stamp_data[0] is the first low-to-high transition, time_stamp_data[2] the second, etc.
+ # -> time_stamp_data[2] is the low-to-high transition indicating the end of the first sync pulse
+ # -> time_stamp_data[-8] is the low-to-high transition indicating the start of the first after-measurement sync pulse
+
+ start_timestamp = datasync_timestamps[0][1]
+ start_offset = start_timestamp - time_stamp_data[2]
+
+ end_timestamp = datasync_timestamps[-2][0]
+ end_offset = end_timestamp - (time_stamp_data[-8] + start_offset)
+ logger.debug(
+ f"Measurement area: ET timestamp range [{start_timestamp}, {end_timestamp}]"
+ )
+ logger.debug(
+ f"Measurement area: LA timestamp range [{time_stamp_data[2]}, {time_stamp_data[-8]}]"
+ )
+ logger.debug(f"Start/End offsets: {start_offset} / {end_offset}")
+
+ if end_offset > 10:
+ logger.warning(
+ f"synchronization end_offset == {end_offset}. It should be no more than a few seconds."
+ )
+
+ with_offset = np.array(time_stamp_data) + start_offset
+ logger.debug(
+ f"Measurement area with offset: LA timestamp range [{with_offset[2]}, {with_offset[-8]}]"
+ )
+
+ with_drift = self.addDrift(
+ with_offset, end_timestamp, end_offset, start_timestamp
+ )
+ logger.debug(
+ f"Measurement area with drift: LA timestamp range [{with_drift[2]}, {with_drift[-8]}]"
+ )
+
+ self.modified_timestamps = with_drift
+
+ def removeTooFarDatasets(self, input_timestamps):
+ """
+ Removing datasets, that are to far away at ethe end
+
+ :param input_timestamps: List of timestamps (float list)
+ :return: List of modified timestamps (float list)
+ """
+ modified_timestamps = []
+ for i, x in enumerate(input_timestamps):
+ # print(x - input_timestamps[i - 1], x - input_timestamps[i - 1] < 2.5)
+ if x - input_timestamps[i - 1] < 1.6:
+ modified_timestamps.append(x)
+ else:
+ break
+ return modified_timestamps
+
+ def addDrift(self, input_timestamps, end_timestamp, end_offset, start_timestamp):
+ """
+ Add drift to datapoints
+
+ :param input_timestamps: List of timestamps (float list)
+ :param end_timestamp: Timestamp of first EnergyTrace datapoint at the second-to-last sync point
+ :param end_offset: the time between end_timestamp and the timestamp of synchronisation signal
+ :param start_timestamp: Timestamp of last EnergyTrace datapoint at the first sync point
+ :return: List of modified timestamps (float list)
+ """
+ endFactor = 1 + (end_offset / ((end_timestamp - end_offset) - start_timestamp))
+ # print(
+ # f"({end_timestamp} + {end_offset} - {start_timestamp}) / ({end_timestamp} - {start_timestamp}) == {endFactor}"
+ # )
+ # Manuelles endFactor += 0.0001 macht es merklich besser
+ # print(f"endFactor = {endFactor}")
+ # endFactor assumes that the end of the first sync pulse is at timestamp 0.
+ # Then, timestamps with drift := timestamps * endFactor.
+ # As this is not the case (the first sync pulse ends at start_timestamp > 0), we shift the data by first
+ # removing start_timestamp, then multiplying with endFactor, and then re-adding the start_timestamp.
+ modified_timestamps_with_drift = (
+ input_timestamps - start_timestamp
+ ) * endFactor + start_timestamp
+ return modified_timestamps_with_drift
+
+ def export_sync(self):
+ # [1st trans start, 1st trans stop, 2nd trans start, 2nd trans stop, ...]
+ sync_timestamps = list()
+
+ for i in range(4, len(self.modified_timestamps) - 8, 2):
+ sync_timestamps.append(
+ (self.modified_timestamps[i], self.modified_timestamps[i + 1])
+ )
+
+ # EnergyTrace timestamps
+ timestamps = self.plot_data_x
+
+ # EnergyTrace power values
+ power = self.plot_data_y
+
+ return {"sync": sync_timestamps, "timestamps": timestamps, "power": power}
+
+ def plot(self, annotateData=None):
+ """
+ Plots the power usage and the timestamps by logic analyzer
+
+ :param annotateData: List of Strings with labels, only needed if annotated plots are wished
+ :return: None
+ """
+
+ def calculateRectangleCurve(timestamps, min_value=0, max_value=0.160):
+ import numpy as np
+
+ data = []
+ for ts in timestamps:
+ data.append(ts)
+ data.append(ts)
+
+ a = np.empty((len(data),))
+ a[0::4] = min_value
+ a[1::4] = max_value
+ a[2::4] = max_value
+ a[3::4] = min_value
+ return data, a # plotting by columns
+
+ import matplotlib.pyplot as plt
+
+ fig, ax = plt.subplots()
+
+ if annotateData:
+ annot = ax.annotate(
+ "",
+ xy=(0, 0),
+ xytext=(20, 20),
+ textcoords="offset points",
+ bbox=dict(boxstyle="round", fc="w"),
+ arrowprops=dict(arrowstyle="->"),
+ )
+ annot.set_visible(True)
+
+ rectCurve_with_drift = calculateRectangleCurve(
+ self.modified_timestamps, max_value=max(self.plot_data_y)
+ )
+
+ plt.plot(self.plot_data_x, self.plot_data_y, label="Leistung")
+
+ plt.plot(
+ rectCurve_with_drift[0],
+ rectCurve_with_drift[1],
+ "-g",
+ label="Synchronisationsignale mit Driftfaktor",
+ )
+
+ plt.xlabel("Zeit von EnergyTrace [s]")
+ plt.ylabel("Leistung [W]")
+ leg = plt.legend()
+
+ def getDataText(x):
+ # print(x)
+ dl = len(annotateData)
+ for i, xt in enumerate(self.modified_timestamps):
+ if xt > x and i >= 4 and i - 5 < dl:
+ return f"SoT: {annotateData[i - 5]}"
+
+ def update_annot(x, y, name):
+ annot.xy = (x, y)
+ text = name
+
+ annot.set_text(text)
+ annot.get_bbox_patch().set_alpha(0.4)
+
+ def hover(event):
+ if event.xdata and event.ydata:
+ annot.set_visible(False)
+ update_annot(event.xdata, event.ydata, getDataText(event.xdata))
+ annot.set_visible(True)
+ fig.canvas.draw_idle()
+
+ if annotateData:
+ fig.canvas.mpl_connect("motion_notify_event", hover)
+
+ plt.show()
+
+ def getPowerBetween(self, start, end, state_sleep): # 0.001469
+ """
+ calculates the powerusage in interval
+ NOT SIDE EFFECT FREE, DON'T USE IT EVERYWHERE
+
+ :param start: Start timestamp of interval
+ :param end: End timestamp of interval
+ :param state_sleep: Length in seconds of one state, needed for cutting out the UART Sending cycle
+ :return: power measurements in W
+ """
+ first_index = 0
+ all_power = list()
+ all_ts = list()
+ for ind in range(self.start_offset, len(self.plot_data_x)):
+ first_index = ind
+ if self.plot_data_x[ind] > start:
+ break
+
+ nextIndAfterIndex = None
+ for ind in range(first_index, len(self.plot_data_x)):
+ nextIndAfterIndex = ind
+ if (
+ self.plot_data_x[ind] > end
+ or self.plot_data_x[ind] > start + state_sleep
+ ):
+ self.start_offset = ind - 1
+ break
+ all_power.append(self.plot_data_y[ind])
+ all_ts.append(self.plot_data_x[ind])
+
+ # TODO Idea remove datapoints that are too far away
+ def removeSD_Mean_Values(arr):
+ import numpy
+
+ elements = numpy.array(arr)
+
+ mean = numpy.mean(elements, axis=0)
+ sd = numpy.std(elements, axis=0)
+
+ return [x for x in arr if (mean - 1 * sd < x < mean + 1.5 * sd)]
+
+ if len(all_power) > 10:
+ # all_power = removeSD_Mean_Values(all_power)
+ pass
+ # TODO algorithm relocate datapoint
+
+ pre_fix_len = len(all_power)
+ if len(all_power) == 0:
+ # print("PROBLEM")
+ all_power.append(self.plot_data_y[nextIndAfterIndex])
+ all_ts.append(0)
+ elif len(all_power) == 1:
+ # print("OKAY")
+ pass
+ return np.array(all_power), np.array(all_ts)
+
+ def getStatesdfatool(self, state_sleep, with_traces=False, algorithm=False):
+ """
+ Calculates the length and energy usage of the states
+
+ :param state_sleep: Length in seconds of one state, needed for cutting out the UART Sending cycle
+ :param algorithm: possible usage of accuracy algorithm / not implemented yet
+ :returns: returns list of states and transitions, starting with a transition and ending with astate
+ Each element is a dict containing:
+ * `isa`: 'state' or 'transition'
+ * `W_mean`: Mittelwert der Leistungsaufnahme
+ * `W_std`: Standardabweichung der Leistungsaufnahme
+ * `s`: Dauer
+ """
+ if algorithm:
+ raise NotImplementedError
+ end_transition_ts = None
+ timestamps_sync_start = 0
+ energy_trace_new = list()
+
+ for ts_index in range(
+ 0 + timestamps_sync_start, int(len(self.modified_timestamps) / 2)
+ ):
+ start_transition_ts = self.modified_timestamps[ts_index * 2]
+ start_transition_ts_timing = self.reduced_timestamps[ts_index * 2]
+
+ if end_transition_ts is not None:
+ power, timestamps = self.getPowerBetween(
+ end_transition_ts, start_transition_ts, state_sleep
+ )
+
+ # print("STATE", end_transition_ts * 10 ** 6, start_transition_ts * 10 ** 6, (start_transition_ts - end_transition_ts) * 10 ** 6, power)
+ if (
+ (start_transition_ts - end_transition_ts) * 10 ** 6 > 900_000
+ and np.mean(power) > self.power_sync_watt * 0.9
+ and ts_index > 10
+ ):
+ # remove last transition and stop (upcoming data only sync)
+ del energy_trace_new[-1]
+ break
+ pass
+
+ state = {
+ "isa": "state",
+ "W_mean": np.mean(power),
+ "W_std": np.std(power),
+ "s": (
+ start_transition_ts_timing - end_transition_ts_timing
+ ), # * 10 ** 6,
+ }
+ if with_traces:
+ state["plot"] = (timestamps - timestamps[0], power)
+ energy_trace_new.append(state)
+
+ energy_trace_new[-2]["W_mean_delta_next"] = (
+ energy_trace_new[-2]["W_mean"] - energy_trace_new[-1]["W_mean"]
+ )
+
+ # get energy end_transition_ts
+ end_transition_ts = self.modified_timestamps[ts_index * 2 + 1]
+ power, timestamps = self.getPowerBetween(
+ start_transition_ts, end_transition_ts, state_sleep
+ )
+
+ # print("TRANS", start_transition_ts * 10 ** 6, end_transition_ts * 10 ** 6, (end_transition_ts - start_transition_ts) * 10 ** 6, power)
+ end_transition_ts_timing = self.reduced_timestamps[ts_index * 2 + 1]
+
+ transition = {
+ "isa": "transition",
+ "W_mean": np.mean(power),
+ "W_std": np.std(power),
+ "s": (
+ end_transition_ts_timing - start_transition_ts_timing
+ ), # * 10 ** 6,
+ "count_dp": len(power),
+ }
+ if with_traces:
+ transition["plot"] = (timestamps - timestamps[0], power)
+
+ if (end_transition_ts - start_transition_ts) * 10 ** 6 > 2_000_000:
+ # TODO Last data set corrupted? HOT FIX!!!!!!!!!!!! REMOVE LATER
+ # for x in range(4):
+ # del energy_trace_new[-1]
+ # break
+ pass
+
+ energy_trace_new.append(transition)
+ # print(start_transition_ts, "-", end_transition_ts, "-", end_transition_ts - start_transition_ts)
+ return energy_trace_new