summaryrefslogtreecommitdiff
path: root/lib/lennart
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-11-27 15:01:06 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2020-11-27 15:01:06 +0100
commit17900d7687f96b68b1cefd8c78bce80e9161186c (patch)
tree0dc1b1175de96459d575ca684335ce3d60ccf0d5 /lib/lennart
parent46220b34337e2ea65dc97eae383f6ca5113c0d60 (diff)
clean up energytrace drift compensation and raw model generation code
Diffstat (limited to 'lib/lennart')
-rw-r--r--lib/lennart/DataProcessor.py278
1 files changed, 132 insertions, 146 deletions
diff --git a/lib/lennart/DataProcessor.py b/lib/lennart/DataProcessor.py
index 319b37f..32d4dae 100644
--- a/lib/lennart/DataProcessor.py
+++ b/lib/lennart/DataProcessor.py
@@ -1,5 +1,7 @@
+#!/usr/bin/env python3
import numpy as np
import logging
+from bisect import bisect_right
logger = logging.getLogger(__name__)
@@ -12,10 +14,13 @@ class DataProcessor:
:param sync_data: input timestamps (SigrokResult)
:param energy_data: List of EnergyTrace datapoints
"""
- self.reduced_timestamps = []
- self.modified_timestamps = []
- self.plot_data_x = []
- self.plot_data_y = []
+ self.raw_sync_timestamps = []
+ # high-precision LA/Timer timestamps at synchronization events
+ self.sync_timestamps = []
+ # low-precision energytrace timestamps
+ self.et_timestamps = []
+ # energytrace power values
+ self.et_power_values = []
self.sync_data = sync_data
self.energy_data = energy_data
self.start_offset = 0
@@ -50,10 +55,7 @@ class DataProcessor:
last_data = [0, 0, 0, 0]
- # clean timestamp data, if at the end strange ts got added somehow
- # time_stamp_data = self.removeTooFarDatasets(time_stamp_data)
-
- self.reduced_timestamps = time_stamp_data
+ self.raw_sync_timestamps = time_stamp_data
# NEW
datasync_timestamps = []
@@ -91,8 +93,8 @@ class DataProcessor:
last_data = energytrace_dataset
- self.plot_data_x.append(timestamp / 1_000_000)
- self.plot_data_y.append(power)
+ self.et_timestamps.append(timestamp / 1_000_000)
+ self.et_power_values.append(power)
if power > self.power_sync_watt:
if (self.energy_data[-1][0] - sync_start) / 1_000_000 > self.power_sync_len:
@@ -137,23 +139,7 @@ class DataProcessor:
f"Measurement area with drift: LA timestamp range [{with_drift[2]}, {with_drift[-8]}]"
)
- self.modified_timestamps = with_drift
-
- def removeTooFarDatasets(self, input_timestamps):
- """
- Removing datasets, that are to far away at ethe end
-
- :param input_timestamps: List of timestamps (float list)
- :return: List of modified timestamps (float list)
- """
- modified_timestamps = []
- for i, x in enumerate(input_timestamps):
- # print(x - input_timestamps[i - 1], x - input_timestamps[i - 1] < 2.5)
- if x - input_timestamps[i - 1] < 1.6:
- modified_timestamps.append(x)
- else:
- break
- return modified_timestamps
+ self.sync_timestamps = with_drift
def addDrift(self, input_timestamps, end_timestamp, end_offset, start_timestamp):
"""
@@ -170,25 +156,25 @@ class DataProcessor:
# Then, timestamps with drift := timestamps * endFactor.
# As this is not the case (the first sync pulse ends at start_timestamp > 0), we shift the data by first
# removing start_timestamp, then multiplying with endFactor, and then re-adding the start_timestamp.
- modified_timestamps_with_drift = (
+ sync_timestamps_with_drift = (
input_timestamps - start_timestamp
) * endFactor + start_timestamp
- return modified_timestamps_with_drift
+ return sync_timestamps_with_drift
def export_sync(self):
# [1st trans start, 1st trans stop, 2nd trans start, 2nd trans stop, ...]
sync_timestamps = list()
- for i in range(4, len(self.modified_timestamps) - 8, 2):
+ for i in range(4, len(self.sync_timestamps) - 8, 2):
sync_timestamps.append(
- (self.modified_timestamps[i], self.modified_timestamps[i + 1])
+ (self.sync_timestamps[i], self.sync_timestamps[i + 1])
)
# EnergyTrace timestamps
- timestamps = self.plot_data_x
+ timestamps = self.et_timestamps
# EnergyTrace power values
- power = self.plot_data_y
+ power = self.et_power_values
return {"sync": sync_timestamps, "timestamps": timestamps, "power": power}
@@ -231,10 +217,10 @@ class DataProcessor:
annot.set_visible(True)
rectCurve_with_drift = calculateRectangleCurve(
- self.modified_timestamps, max_value=max(self.plot_data_y)
+ self.sync_timestamps, max_value=max(self.et_power_values)
)
- plt.plot(self.plot_data_x, self.plot_data_y, label="Leistung")
+ plt.plot(self.et_timestamps, self.et_power_values, label="Leistung")
plt.plot(
rectCurve_with_drift[0],
@@ -250,7 +236,7 @@ class DataProcessor:
def getDataText(x):
# print(x)
dl = len(annotateData)
- for i, xt in enumerate(self.modified_timestamps):
+ for i, xt in enumerate(self.sync_timestamps):
if xt > x and i >= 4 and i - 5 < dl:
return f"SoT: {annotateData[i - 5]}"
@@ -273,62 +259,6 @@ class DataProcessor:
plt.show()
- def getPowerBetween(self, start, end, state_sleep): # 0.001469
- """
- calculates the powerusage in interval
- NOT SIDE EFFECT FREE, DON'T USE IT EVERYWHERE
-
- :param start: Start timestamp of interval
- :param end: End timestamp of interval
- :param state_sleep: Length in seconds of one state, needed for cutting out the UART Sending cycle
- :return: power measurements in W
- """
- first_index = 0
- all_power = list()
- all_ts = list()
- for ind in range(self.start_offset, len(self.plot_data_x)):
- first_index = ind
- if self.plot_data_x[ind] > start:
- break
-
- nextIndAfterIndex = None
- for ind in range(first_index, len(self.plot_data_x)):
- nextIndAfterIndex = ind
- if (
- self.plot_data_x[ind] > end
- or self.plot_data_x[ind] > start + state_sleep
- ):
- self.start_offset = ind - 1
- break
- all_power.append(self.plot_data_y[ind])
- all_ts.append(self.plot_data_x[ind])
-
- # TODO Idea remove datapoints that are too far away
- def removeSD_Mean_Values(arr):
- import numpy
-
- elements = numpy.array(arr)
-
- mean = numpy.mean(elements, axis=0)
- sd = numpy.std(elements, axis=0)
-
- return [x for x in arr if (mean - 1 * sd < x < mean + 1.5 * sd)]
-
- if len(all_power) > 10:
- # all_power = removeSD_Mean_Values(all_power)
- pass
- # TODO algorithm relocate datapoint
-
- pre_fix_len = len(all_power)
- if len(all_power) == 0:
- # print("PROBLEM")
- all_power.append(self.plot_data_y[nextIndAfterIndex])
- all_ts.append(0)
- elif len(all_power) == 1:
- # print("OKAY")
- pass
- return np.array(all_power), np.array(all_ts)
-
def getStatesdfatool(self, state_sleep, with_traces=False, algorithm=False):
"""
Calculates the length and energy usage of the states
@@ -348,72 +278,128 @@ class DataProcessor:
timestamps_sync_start = 0
energy_trace_new = list()
- for ts_index in range(
- 0 + timestamps_sync_start, int(len(self.modified_timestamps) / 2)
- ):
- start_transition_ts = self.modified_timestamps[ts_index * 2]
- start_transition_ts_timing = self.reduced_timestamps[ts_index * 2]
+ # sync_timestamps[3] is the start of the first (UNINITIALIZED) state (and the end of the benchmark-start sync pulse)
+ # sync_timestamps[-8] is the end of the final state and the corresponding UART dump (and the start of the benchmark-end sync pulses)
+ self.trigger_high_precision_timestamps = self.sync_timestamps[3:-7]
+
+ self.trigger_edges = list()
+ for ts in self.trigger_high_precision_timestamps:
+ # Let ts be the trigger timestamp corresponding to the end of a transition.
+ # We are looking for an index i such that et_timestamps[i-1] <= ts < et_timestamps[i].
+ # Then, et_power_values[i] (the mean power in the interval et_timestamps[i-1] .. et_timestamps[i]) is affected by the transition and
+ # et_power_values[i+1] is not affected by it.
+ #
+ # bisect_right does just what we need; bisect_left would correspond to et_timestamps[i-1] < ts <= et_timestamps[i].
+ # Not that this is a moot point in practice, as ts ≠ et_timestamps[j] for almost all j. Also, the resolution of
+ # et_timestamps is several decades lower than the resolution of trigger_high_precision_timestamps.
+ self.trigger_edges.append(bisect_right(self.et_timestamps, ts))
+
+ # Loop over transitions. We start at the end of the first transition and handle the transition and the following state.
+ # We then proceed to the end of the second transition, etc.
+ for i in range(2, len(self.trigger_high_precision_timestamps), 2):
+ prev_state_start_index = self.trigger_edges[i - 2]
+ prev_state_stop_index = self.trigger_edges[i - 1]
+ transition_start_index = self.trigger_edges[i - 1]
+ transition_stop_index = self.trigger_edges[i]
+ state_start_index = self.trigger_edges[i]
+ state_stop_index = self.trigger_edges[i + 1]
+
+ # If a transition takes less time than the energytrace measurement interval, its start and stop index may be the same.
+ # In this case, et_power_values[transition_start_index] is the only data point affected by the transition.
+ # We use the et_power_values slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
+ # to increment transition_stop_index by 1 to end at et_power_values[transition_start_index]
+ # (as et_power_values[transition_start_index : transition_start_index+1 ] == [et_power_values[transition_start_index])
+ if transition_stop_index == transition_start_index:
+ transition_stop_index += 1
+
+ prev_state_duration = (
+ self.trigger_high_precision_timestamps[i + 1]
+ - self.trigger_high_precision_timestamps[i]
+ )
+ transition_duration = (
+ self.trigger_high_precision_timestamps[i]
+ - self.trigger_high_precision_timestamps[i - 1]
+ )
+ state_duration = (
+ self.trigger_high_precision_timestamps[i + 1]
+ - self.trigger_high_precision_timestamps[i]
+ )
- if end_transition_ts is not None:
- power, timestamps = self.getPowerBetween(
- end_transition_ts, start_transition_ts, state_sleep
+ # some states are followed by a UART dump of log data. This causes an increase in CPU energy
+ # consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
+ # If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
+ # In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
+ # instead of high-precision sync data
+ if (
+ self.et_timestamps[prev_state_stop_index]
+ - self.et_timestamps[prev_state_start_index]
+ > state_sleep
+ ):
+ prev_state_stop_index = bisect_right(
+ self.et_timestamps,
+ self.et_timestamps[prev_state_start_index] + state_sleep,
+ )
+ prev_state_duration = (
+ self.et_timestamps[prev_state_stop_index]
+ - self.et_timestamps[prev_state_start_index]
)
- # print("STATE", end_transition_ts * 10 ** 6, start_transition_ts * 10 ** 6, (start_transition_ts - end_transition_ts) * 10 ** 6, power)
- if (
- (start_transition_ts - end_transition_ts) * 10 ** 6 > 900_000
- and np.mean(power) > self.power_sync_watt * 0.9
- and ts_index > 10
- ):
- # remove last transition and stop (upcoming data only sync)
- del energy_trace_new[-1]
- break
- pass
-
- state = {
- "isa": "state",
- "W_mean": np.mean(power),
- "W_std": np.std(power),
- "s": (
- start_transition_ts_timing - end_transition_ts_timing
- ), # * 10 ** 6,
- }
- if with_traces:
- state["plot"] = (timestamps - timestamps[0], power)
- energy_trace_new.append(state)
-
- energy_trace_new[-2]["W_mean_delta_next"] = (
- energy_trace_new[-2]["W_mean"] - energy_trace_new[-1]["W_mean"]
+ if (
+ self.et_timestamps[state_stop_index]
+ - self.et_timestamps[state_start_index]
+ > state_sleep
+ ):
+ state_stop_index = bisect_right(
+ self.et_timestamps,
+ self.et_timestamps[state_start_index] + state_sleep,
+ )
+ state_duration = (
+ self.et_timestamps[state_stop_index]
+ - self.et_timestamps[state_start_index]
)
- # get energy end_transition_ts
- end_transition_ts = self.modified_timestamps[ts_index * 2 + 1]
- power, timestamps = self.getPowerBetween(
- start_transition_ts, end_transition_ts, state_sleep
- )
+ prev_state_power = self.et_power_values[
+ prev_state_start_index:prev_state_stop_index
+ ]
- # print("TRANS", start_transition_ts * 10 ** 6, end_transition_ts * 10 ** 6, (end_transition_ts - start_transition_ts) * 10 ** 6, power)
- end_transition_ts_timing = self.reduced_timestamps[ts_index * 2 + 1]
+ transition_timestamps = self.et_timestamps[
+ transition_start_index:transition_stop_index
+ ]
+ transition_power = self.et_power_values[
+ transition_start_index:transition_stop_index
+ ]
+
+ state_timestamps = self.et_timestamps[state_start_index:state_stop_index]
+ state_power = self.et_power_values[state_start_index:state_stop_index]
transition = {
"isa": "transition",
- "W_mean": np.mean(power),
- "W_std": np.std(power),
- "s": (
- end_transition_ts_timing - start_transition_ts_timing
- ), # * 10 ** 6,
- "count_dp": len(power),
+ "W_mean": np.mean(transition_power),
+ "W_std": np.std(transition_power),
+ "s": transition_duration,
+ "count_dp": len(transition_power),
+ }
+ if with_traces:
+ transition["plot"] = (
+ transition_timestamps - transition_timestamps[0],
+ transition_power,
+ )
+
+ state = {
+ "isa": "state",
+ "W_mean": np.mean(state_power),
+ "W_std": np.std(state_power),
+ "s": state_duration,
}
if with_traces:
- transition["plot"] = (timestamps - timestamps[0], power)
+ state["plot"] = (state_timestamps - state_timestamps[0], state_power)
- if (end_transition_ts - start_transition_ts) * 10 ** 6 > 2_000_000:
- # TODO Last data set corrupted? HOT FIX!!!!!!!!!!!! REMOVE LATER
- # for x in range(4):
- # del energy_trace_new[-1]
- # break
- pass
+ transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
+ prev_state_power
+ )
+ transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
energy_trace_new.append(transition)
- # print(start_transition_ts, "-", end_transition_ts, "-", end_transition_ts - start_transition_ts)
+ energy_trace_new.append(state)
+
return energy_trace_new