diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-22 13:06:49 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-22 13:06:49 +0100 |
commit | 3eb0f39113b4d550819f18cfe38ba57a2d541bfd (patch) | |
tree | 3bc908499ba518c0e3df654755268b2bcebea1ac /lib/loader/generic.py | |
parent | 843742e6640c55178a9916e98e69a13ffd95dd30 (diff) |
ExternalTimerSync: Add drift compensation
Use ExternalTimerSync for energytrace+timer. energytrace+LA code reuse is still
to-do.
Diffstat (limited to 'lib/loader/generic.py')
-rw-r--r-- | lib/loader/generic.py | 115 |
1 files changed, 90 insertions, 25 deletions
diff --git a/lib/loader/generic.py b/lib/loader/generic.py index fce823c..a34f486 100644 --- a/lib/loader/generic.py +++ b/lib/loader/generic.py @@ -1,39 +1,71 @@ #!/usr/bin/env python3 +import json +import logging import numpy as np import os from bisect import bisect_right +from dfatool.utils import NpEncoder + +logger = logging.getLogger(__name__) class ExternalTimerSync: def __init__(self): raise NotImplementedError("must be implemented in sub-class") + def assert_sync_areas(self, sync_areas): + # may be implemented in sub-class + pass + + def compensate_drift(self, data, timestamps, event_timestamps, offline_index=None): + # adjust intermediate timestamps. There is a small error between consecutive measurements, + # again due to drift caused by random temperature fluctuation. The error increases with + # increased distance from synchronization points: It is negligible at the start and end + # of the measurement and may be quite high around the middle. That's just the bounds, though -- + # you may also have a low error in the middle and error peaks elsewhere. + # As the start and stop timestamps have already been synchronized, we only adjust + # actual transition timestamps here. + if os.getenv("DFATOOL_COMPENSATE_DRIFT"): + import dfatool.drift + + return dfatool.drift.compensate( + data, timestamps, event_timestamps, offline_index=offline_index + ) + return event_timestamps + # very similar to DataProcessor.getStatesdfatool # requires: # * self.data (e.g. power readings) # * self.timestamps (timstamps in seconds) + # * self.sync_min_high_count, self.sync_min_low_count: outlier handling in synchronization pulse detection # * self.sync_power, self.sync_min_duration: synchronization pulse parameters. one pulse before the measurement, two pulses afterwards # expected_trace must contain online timestamps def analyze_states(self, expected_trace, repeat_id): sync_start = None sync_timestamps = list() - above_count = 0 - below_count = 0 + high_count = 0 + low_count = 0 + high_ts = None + low_ts = None for i, timestamp in enumerate(self.timestamps): power = self.data[i] if power > self.sync_power: - above_count += 1 - below_count = 0 + if high_count == 0: + high_ts = timestamp + high_count += 1 + low_count = 0 else: - above_count = 0 - below_count += 1 - - if above_count > 2 and sync_start is None: - sync_start = timestamp - elif below_count > 2 and sync_start is not None: - if timestamp - sync_start > self.sync_min_duration: - sync_end = timestamp + if low_count == 0: + low_ts = timestamp + high_count = 0 + low_count += 1 + + if high_count >= self.sync_min_high_count and sync_start is None: + sync_start = high_ts + elif low_count >= self.sync_min_low_count and sync_start is not None: + if low_ts - sync_start > self.sync_min_duration: + sync_end = low_ts sync_timestamps.append((sync_start, sync_end)) sync_start = None print(sync_timestamps) @@ -45,6 +77,8 @@ class ExternalTimerSync: self.errors.append(f"Synchronization pulses == {sync_timestamps}") return list() + self.assert_sync_areas(sync_timestamps) + start_ts = sync_timestamps[0][1] end_ts = sync_timestamps[1][0] @@ -52,16 +86,30 @@ class ExternalTimerSync: online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]] # remaining events from the end of the first transition (start of second state) to the end of the last observed state - for trace in expected_trace: - for word in trace["trace"]: - online_timestamps.append( - online_timestamps[-1] - + word["online_aggregates"]["duration"][repeat_id] - ) + try: + for trace in expected_trace: + for word in trace["trace"]: + online_timestamps.append( + online_timestamps[-1] + + word["online_aggregates"]["duration"][repeat_id] + ) + except IndexError: + self.errors.append( + f"""offline_index {repeat_id} missing in trace {trace["id"]}""" + ) + return list() online_timestamps = np.array(online_timestamps) * 1e-6 online_timestamps = ( - online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts + online_timestamps + * ((end_ts - start_ts) / (online_timestamps[-1] - online_timestamps[0])) + + start_ts + ) + + # drift compensation works on transition boundaries. Exclude start of first state and end of last state. + # Those are defined to have zero drift anyways. + online_timestamps[1:-1] = self.compensate_drift( + self.data, self.timestamps, online_timestamps[1:-1], repeat_id ) trigger_edges = list() @@ -166,9 +214,31 @@ class ExternalTimerSync: ): self.plot_sync(online_timestamps) # <- plot traces with sync annotatons # self.plot_sync(names) # <- plot annotated traces (with state/transition names) + # TODO LASYNC -> SYNC + if os.getenv("DFATOOL_EXPORT_LASYNC") is not None: + filename = os.getenv("DFATOOL_EXPORT_LASYNC") + f"_{repeat_id}.json" + with open(filename, "w") as f: + json.dump(self._export_sync(online_timestamps), f, cls=NpEncoder) + logger.info("Exported sync timestamps to {filename}") return energy_trace + def _export_sync(self, online_timestamps): + # [(1st trans start, 1st trans stop), (2nd trans start, 2nd trans stop), ...] + sync_timestamps = list() + + for i in range(1, len(online_timestamps) - 1, 2): + sync_timestamps.append((online_timestamps[i], online_timestamps[i + 1])) + + # input timestamps + timestamps = self.timestamps + + # input data, e.g. power + data = self.data + + # TODO "power" -> "data" + return {"sync": sync_timestamps, "timestamps": timestamps, "power": data} + def plot_sync(self, event_timestamps, annotateData=None): """ Plots the power usage and the timestamps by logic analyzer @@ -214,12 +284,7 @@ class ExternalTimerSync: plt.plot(self.timestamps, self.data, label="Leistung") plt.plot(self.timestamps, np.gradient(self.data), label="dP/dt") - plt.plot( - rectCurve_with_drift[0], - rectCurve_with_drift[1], - "-g", - label="Events", - ) + plt.plot(rectCurve_with_drift[0], rectCurve_with_drift[1], "-g", label="Events") plt.xlabel("Zeit [s]") plt.ylabel("Leistung [W]") |