summaryrefslogtreecommitdiff
path: root/lib/parameters.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-10-11 14:40:48 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-10-11 14:40:48 +0200
commita2adf6a90246110fcae4e6a6dcc049d8d69fcb48 (patch)
treeec94d9e77e067e2e168467947f5fd390ed66c569 /lib/parameters.py
parent2a75bc679e2970f9ae938a418af5acea9106e61d (diff)
add helper functions for co-dependent parameter detection
Diffstat (limited to 'lib/parameters.py')
-rw-r--r--lib/parameters.py212
1 files changed, 161 insertions, 51 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index 1518076..bc26643 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -19,8 +19,6 @@ def distinct_param_values(by_name, state_or_tran):
write() or similar has not been called yet. Other parameters should always
be initialized when leaving UNINITIALIZED.
"""
- # TODO a set() is an _unordered_ collection, so this must be converted to
- # an OrderedDict or a list with a duplicate-pruning step
distinct_values = [OrderedDict() for i in range(len(by_name[state_or_tran]['param'][0]))]
for param_tuple in by_name[state_or_tran]['param']:
for i in range(len(param_tuple)):
@@ -32,31 +30,37 @@ def distinct_param_values(by_name, state_or_tran):
def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False):
u"""
- Calculate standard deviations for a static model where all parameters but param_index are constant.
+ Calculate standard deviations for a static model where all parameters but `param_index` are constant.
:param by_param: measurements sorted by key/transition name and parameter values
+ :param all_param_values: distinct values of each parameter in `state_or_tran`.
+ E.g. for two parameters, the first being None, FOO, or BAR, and the second being 1, 2, 3, or 4, the argument is
+ `[[None, 'FOO', 'BAR'], [1, 2, 3, 4]]`.
:param state_or_tran: state or transition name (-> by_param[(state_or_tran, *)])
:param attribute: model attribute, e.g. 'power' or 'duration'
(-> by_param[(state_or_tran, *)][attribute])
:param param_index: index of variable parameter
- :returns: (stddev matrix, mean stddev)
-
- Returns the mean standard deviation of all measurements of 'attribute'
- (e.g. power consumption or timeout) for state/transition 'state_or_tran' where
- parameter 'param_index' is dynamic and all other parameters are fixed.
- I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
- this function returns the mean of the standard deviations of (a=1, b=*, c=1),
- (a=1, b=*, c=2), and so on.
- Also returns an (n-1)-dimensional array (where n is the number of parameters)
- giving the standard deviation of each individual partition. E.g. for
- param_index == 2 and 4 parameters, array[a][b][d] is the
- stddev of measurements with param0 == a, param1 == b, param2 variable,
- and param3 == d.
+ :returns: (stddev matrix, mean stddev, LUT matrix)
+ *stddev matrix* is an ((number of parameters)-1)-dimensional matrix giving the standard deviation of each individual parameter variation partition.
+ E.g. for param_index == 2 and 4 parameters, stddev matrix[a][b][d] is the stddev of
+ measurements with param0 == all_param_values[0][a],
+ param1 == all_param_values[1][b], param2 variable, and
+ param3 == all_param_values[3][d].
+ *mean stddev* is the mean standard deviation of all measurements of `attribute`
+ for `state_or_tran` where parameter `param_index` is dynamic and all other parameters are fixed.
+ E.g., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
+ this function returns the mean of the standard deviations of (a=1, b=*, c=1),
+ (a=1, b=*, c=2), and so on.
+ *LUT matrix* is an ((number of parameters)-1)-dimensional matrix giving the mean standard deviation of individual partitions with entirely constant parameters.
+ E.g. for param_index == 2 and 4 parameters, LUT matrix[a][b][d] is the mean of
+ stddev(param0 -> a, param1 -> b, param2 -> first distinct value, param3 -> d),
+ stddev(param0 -> a, param1 -> b, param2 -> second distinct value, param3 -> d),
+ and so on.
"""
param_values = list(remove_index_from_tuple(all_param_values, param_index))
info_shape = tuple(map(len, param_values))
- # We will calculate the mean over the entire matrix later on. We cannot
+ # We will calculate the mean over the entire matrix later on. As we cannot
# guarantee that each entry will be filled in this loop (e.g. transitions
# whose arguments are combined using 'zip' rather than 'cartesian' always
# have missing parameter combinations), we pre-fill it with NaN and use
@@ -87,13 +91,25 @@ def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_in
# vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value))
if np.all(np.isnan(stddev_matrix)):
- vprint(verbose, '[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index))
- vprint(verbose, 'stddev_matrix = {}'.format(stddev_matrix))
+ print('[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index))
+ print('stddev_matrix = {}'.format(stddev_matrix))
return stddev_matrix, 0.
return stddev_matrix, np.nanmean(stddev_matrix), lut_matrix #np.mean([np.std(partition) for partition in partitions])
def _corr_by_param(by_name, state_or_trans, attribute, param_index):
+ """
+ Return correlation coefficient (`np.corrcoef`) of `by_name[state_or_trans][attribute][:]` <-> `by_name[state_or_trans]['param'][:][param_index]`
+
+ A correlation coefficient close to 1 indicates that the attribute likely depends on the value of the parameter denoted by `param_index`, if it is nearly 0, it likely does not depend on it.
+
+ If any value of `param_index` is not numeric (i.e., can not be parsed as float), this function returns 0.
+
+ :param by_name: measurements partitioned by state/transition name
+ :param state_or_trans: state or transition name
+ :param attribute: model attribute
+ :param param_index: index of parameter in `by_name[state_or_trans]['param']`
+ """
if _all_params_are_numeric(by_name[state_or_trans], param_index):
param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param']))))
try:
@@ -232,6 +248,24 @@ class ParamStats:
for attribute in by_name[state_or_tran]['attributes']:
self.stats[state_or_tran][attribute] = self.compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute, verbose = verbose)
+ def can_be_fitted(self, state_or_tran = None) -> bool:
+ """
+ Return whether a sufficient amount of distinct numeric parameter values is available, allowing a parameter-aware model to be generated.
+
+ :param state_or_tran: state or transition. If unset, returns whether any state or transition can be fitted.
+ """
+ if state_or_tran is None:
+ keys = self.stats.keys()
+ else:
+ keys = [state_or_tran]
+
+ for key in keys:
+ for param in self._parameter_names:
+ if len(list(filter(lambda n: is_numeric(n), self.distinct_values[key][param]))) > 2:
+ print(key, param, list(filter(lambda n: is_numeric(n), self.distinct_values[key][param])))
+ return True
+ return False
+
def compute_param_statistics(self, by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, verbose = False):
"""
Compute standard deviation and correlation coefficient for various data partitions.
@@ -338,6 +372,108 @@ class ParamStats:
return ret
+ def static_submodel_params(self, state_or_tran, attribute):
+ """
+ Return the union of all parameter values which decide whether another parameter influences the model or not.
+
+ I.e., the returned list of dicts contains one entry for each parameter value combination which (probably) does not have any parameter influencing the model.
+ If the current parameters matches one of these, a static sub-model built based on this subset of parameters can likely be used.
+ """
+ # TODO
+ pass
+
+ def has_codependent_parameters(self, state_or_tran: str, attribute: str, param: str) -> bool:
+ """
+ Return whether there are parameters which determine whether `param` influences `state_or_tran` `attribute` or not.
+
+ :param state_or_tran: model state or transition
+ :param attribute: model attribute
+ :param param: parameter name
+ """
+ if len(self.codependent_parameters(state_or_tran, attribute, param)):
+ return True
+ return False
+
+ def codependent_parameters(self, state_or_tran: str, attribute: str, param: str) -> list:
+ """
+ Return list of parameters which determine whether `param` influences `state_or_tran` `attribute` or not.
+
+ :param state_or_tran: model state or transition
+ :param attribute: model attribute
+ :param param: parameter name
+ """
+ if self.stats[state_or_tran][attribute]['depends_on_param'][param]:
+ return self.stats[state_or_tran][attribute]['param_data'][param]['codependent_parameters']
+ return list()
+
+
+ def has_codependent_parameters_union(self, state_or_tran: str, attribute: str) -> bool:
+ """
+ Return whether there is a subset of parameters which decides whether `state_or_tran` `attribute` is static or parameter-dependent
+
+ :param state_or_tran: model state or transition
+ :param attribute: model attribute
+ """
+ depends_on_a_parameter = False
+ for param in self._parameter_names:
+ if self.stats[state_or_tran][attribute]['depends_on_param'][param]:
+ print('{}/{} depends on {}'.format(state_or_tran, attribute, param))
+ depends_on_a_parameter = True
+ if len(self.codependent_parameters(state_or_tran, attribute, param)) == 0:
+ print('has no codependent parameters')
+ # Always depends on this parameter, regardless of other parameters' values
+ return False
+ return depends_on_a_parameter
+
+ def codependent_parameters_union(self, state_or_tran: str, attribute: str) -> list:
+ """
+ Return list of parameters which determine whether any parameter influences `state_or_tran` `attribute`.
+
+ :param state_or_tran: model state or transition
+ :param attribute: model attribute
+ """
+ codependent_parameters = set()
+ for param in self._parameter_names:
+ if self.stats[state_or_tran][attribute]['depends_on_param'][param]:
+ if len(self.codependent_parameters(state_or_tran, attribute, param)) == 0:
+ return list(self._parameter_names)
+ for codependent_param in self.codependent_parameters(state_or_tran, attribute, param):
+ codependent_parameters.add(codependent_param)
+ return sorted(codependent_parameters)
+
+ def codependence_by_codependent_param_values(self, state_or_tran: str, attribute: str, param: str) -> dict:
+ """
+ Return dict mapping codependent parameter values to a boolean indicating whether `param` influences `state_or_tran` `attribute`.
+
+ If a dict value is true, `attribute` depends on `param` for the corresponding codependent parameter values, otherwise it does not.
+
+ :param state_or_tran: model state or transition
+ :param attribute: model attribute
+ :param param: parameter name
+ """
+ if self.stats[state_or_tran][attribute]['depends_on_param'][param]:
+ return self.stats[state_or_tran][attribute]['param_data'][param]['depends_for_codependent_value']
+ return dict()
+
+ def codependent_parameter_value_dicts(self, state_or_tran: str, attribute: str, param: str, kind='dynamic'):
+ """
+ Return dicts of codependent parameter key-value mappings for which `param` influences (or does not influence) `state_or_tran` `attribute`.
+
+ :param state_or_tran: model state or transition
+ :param attribute: model attribute
+ :param param: parameter name:
+ :param kind: 'static' or 'dynamic'. If 'dynamic' (the default), returns codependent parameter values for which `param` influences `attribute`. If 'static', returns codependent parameter values for which `param` does not influence `attribute`
+ """
+ codependent_parameters = self.stats[state_or_tran][attribute]['param_data'][param]['codependent_parameters']
+ codependence_info = self.stats[state_or_tran][attribute]['param_data'][param]['depends_for_codependent_value']
+ if len(codependent_parameters) == 0:
+ return
+ else:
+ for param_values, is_dynamic in codependence_info.items():
+ if (is_dynamic and kind == 'dynamic') or (not is_dynamic and kind == 'static'):
+ yield dict(zip(codependent_parameters, param_values))
+
+
def _depends_on_param(self, corr_param, std_param, std_lut):
if self.use_corrcoef:
return corr_param > 0.1
@@ -381,9 +517,12 @@ class ParamStats:
if np.all(matrix == True) or np.all(matrix == False):
return list()
- if not is_power_of_two(np.count_nonzero(matrix)):
- # cannot be reliably reduced to a list of parameters
- return list()
+ # Diese Abbruchbedingung scheint noch nicht so schlau zu sein...
+ # Mit wird zu viel rausgefiltert (z.B. auto_ack! -> max_retry_count in "bin/analyze-timing.py ../data/20190815_122531_nRF24_no-rx.json" nicht erkannt)
+ # Ohne wird zu wenig rausgefiltert (auch ganz viele Abhängigkeiten erkannt, bei denen eine Parameter-Abhängigketi immer unabhängig vom Wert der anderen Parameter besteht)
+ #if not is_power_of_two(np.count_nonzero(matrix)):
+ # # cannot be reliably reduced to a list of parameters
+ # return list()
if np.count_nonzero(matrix) == 1:
influential_parameters = list()
@@ -413,20 +552,6 @@ class ParamStats:
influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list)
return influencer_parameters
- def _get_codependent_parameters(self, stats, param):
- """
- Return list of parameters which affect whether `param` influences the model attribute described in `stats` or not.
- """
- safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
- ratio_by_value = safe_div(stats['lut_by_param_values'][param], stats['std_by_param_values'][param])
- err_mode = np.seterr('ignore')
- dep_by_value = ratio_by_value > 0.5
- np.seterr(**err_mode)
-
- other_param_list = list(filter(lambda x: x != param, self._parameter_names))
- influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list)
- return influencer_parameters
-
def _param_independence_ratio(self, state_or_trans: str, attribute: str, param: str) -> float:
"""
Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param.
@@ -459,21 +584,6 @@ class ParamStats:
"""
return 1 - self._param_independence_ratio(state_or_trans, attribute, param)
- def reverse_dependent_parameters(self, state_or_trans: str, attribute: str, param: str) -> list:
- """
- Return parameters whose value influences whether `attribute` of `state_or_trans` depends on `param` or not.
-
- For example, a radio's TX power is only influenced by the packet length if dynamically sized payloads are enabled.
- So reverse_dependent_parameters('TX', 'power', 'packet_length') == ['dynamic_payload_size'].
-
- :param state_or_trans: state or transition name
- :param attribute: model attribute
- :param param: parameter name
-
- :returns: list of parameters
- """
- return self._get_codependent_parameters(self.stats[state_or_trans][attribute], param)
-
def _arg_independence_ratio(self, state_or_trans, attribute, arg_index):
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef: