summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-11-18 12:16:56 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2019-11-18 12:16:56 +0100
commit7c7e4b650c00e8a69da16b12ab301bcbcf01b1a8 (patch)
tree138745f82d79e0ec61499e8504691b734d561dbc /lib
parentcd57ef9d7817529c86dfa798ce7350c8d4c21038 (diff)
EnergyTraceLog: Finish parser. model analysis is working.
Diffstat (limited to 'lib')
-rw-r--r--lib/dfatool.py230
-rw-r--r--lib/parameters.py3
2 files changed, 202 insertions, 31 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index e01ed1c..bd210be 100644
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -394,9 +394,9 @@ def _preprocess_etlog(measurement):
'fileno' : measurement['fileno'],
'repeat_id' : measurement['repeat_id'],
'info' : measurement['info'],
- 'expcted_trace' : measurement['expected_trace'],
+ 'expected_trace' : measurement['expected_trace'],
'energy_trace' : states_and_transitions,
- 'has_mimosa_error' : etlog.is_error,
+ 'has_mimosa_error' : len(etlog.errors) > 0,
'mimosa_errors' : etlog.errors,
}
@@ -605,6 +605,41 @@ class RawData:
# state_duration is stored as ms, not us
return offline['us'] > state_duration * 1500
+ def _measurement_is_valid_2(self, processed_data):
+ """
+ Check if a dfatool v2 measurement is valid.
+
+ processed_data layout:
+ 'fileno' : measurement['fileno'],
+ 'info' : measurement['info'],
+ 'energy_trace' : etlog.analyze_states()
+ A sequence of unnamed, unparameterized states and transitions with
+ power and timing data
+ 'expected_trace' : trace from PTA DFS (with parameter data)
+ etlog.analyze_states returns a list of (alternating) states and transitions.
+ Each element is a dict containing:
+ - isa: 'state' oder 'transition'
+ - W_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
+ - W_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
+ - s: duration
+
+ if isa == 'transition':
+ - W_mean_delta_prev: Differenz zwischen W_mean und W_mean des vorherigen Zustands
+ - W_mean_delta_next: Differenz zwischen W_mean und W_mean des Folgezustands
+ """
+ setup = self.setup_by_fileno[processed_data['fileno']]
+ traces = processed_data['expected_trace']
+
+ # Check for low-level parser errors
+ if processed_data['has_mimosa_error']:
+ processed_data['error'] = '; '.join(processed_data['mimosa_errors'])
+ return False
+
+ # Note that the low-level parser (EnergyTraceLog) already checks
+ # whether the transition count is correct
+
+ return True
+
def _measurement_is_valid_01(self, processed_data):
"""
Check if a dfatool v0 or v1 measurement is valid.
@@ -617,7 +652,7 @@ class RawData:
'calibration' : caldata,
'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc)
A sequence of unnamed, unparameterized states and transitions with
- energy and timing data
+ power and timing data
'expected_trace' : trace from PTA DFS (with parameter data)
mim.analyze_states returns a list of (alternating) states and transitions.
Each element is a dict containing:
@@ -801,6 +836,76 @@ class RawData:
online_trace_part['offline_aggregates']['timeout'].append(
offline_trace_part['timeout'])
+ def _merge_online_and_etlog(self, measurement):
+ # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
+ # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
+ # (appends data from measurement['energy_trace'])
+ online_datapoints = []
+ traces = self.traces_by_fileno[measurement['fileno']]
+ for run_idx, run in enumerate(traces):
+ for trace_part_idx in range(len(run['trace'])):
+ online_datapoints.append((run_idx, trace_part_idx))
+ for offline_idx, online_ref in enumerate(online_datapoints):
+ online_run_idx, online_trace_part_idx = online_ref
+ offline_trace_part = measurement['energy_trace'][offline_idx]
+ online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
+
+ if not 'offline' in online_trace_part:
+ online_trace_part['offline'] = [offline_trace_part]
+ else:
+ online_trace_part['offline'].append(offline_trace_part)
+
+ paramkeys = sorted(online_trace_part['parameter'].keys())
+
+ paramvalues = list()
+
+ for paramkey in paramkeys:
+ if type(online_trace_part['parameter'][paramkey]) is list:
+ paramvalues.append(soft_cast_int(online_trace_part['parameter'][paramkey][measurement['repeat_id']]))
+ else:
+ paramvalues.append(soft_cast_int(online_trace_part['parameter'][paramkey]))
+
+ # NB: Unscheduled transitions do not have an 'args' field set.
+ # However, they should only be caused by interrupts, and
+ # interrupts don't have args anyways.
+ if arg_support_enabled and 'args' in online_trace_part:
+ paramvalues.extend(map(soft_cast_int, online_trace_part['args']))
+
+ # only if isa == 'state'
+ if 'offline_aggregates' not in online_trace_part:
+ online_trace_part['offline_aggregates'] = {
+ 'duration' : list()
+ }
+
+ offline_aggregates = online_trace_part['offline_aggregates']
+
+ if not 'power' in offline_aggregates:
+ online_trace_part['offline_attributes'] = ['power', 'duration', 'energy']
+ offline_aggregates['power'] = list()
+ offline_aggregates['power_std'] = list()
+ offline_aggregates['energy'] = list()
+ offline_aggregates['paramkeys'] = list()
+ offline_aggregates['param'] = list()
+
+ #if online_trace_part['isa'] == 'transitions':
+ # online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next'])
+ # offline_aggregates['rel_energy_prev'] = list()
+ # offline_aggregates['rel_energy_next'] = list()
+
+ offline_aggregates['power'].append(offline_trace_part['W_mean'] * 1e6)
+ offline_aggregates['power_std'].append(offline_trace_part['W_std'] * 1e6)
+ offline_aggregates['energy'].append(offline_trace_part['W_mean'] * offline_trace_part['s'] * 1e12)
+ offline_aggregates['paramkeys'].append(paramkeys)
+ offline_aggregates['param'].append(paramvalues)
+
+ if online_trace_part['isa'] == 'state':
+ offline_aggregates['duration'].append(offline_trace_part['s'] * 1e6)
+
+ #if online_trace_part['isa'] == 'transition':
+ # offline_aggregates['rel_energy_prev'].append(offline_trace_part['W_mean_delta_prev'] * offline_trace_part['s'] * 1e12)
+ # offline_aggregates['rel_energy_next'].append(offline_trace_part['W_mean_delta_next'] * offline_trace_part['s'] * 1e12)
+
+
def _concatenate_traces(self, list_of_traces):
trace_output = list()
for trace in list_of_traces:
@@ -1014,24 +1119,32 @@ class RawData:
# Strip the last state (it is not part of the scheduled measurement)
measurement['energy_trace'].pop()
repeat = 0
- elif version == 1 or version == 2:
+ elif version == 1:
# The first online measurement is the UNINITIALIZED state. In v1,
# it is not part of the expected PTA trace -> remove it.
measurement['energy_trace'].pop(0)
repeat = ptalog['opt']['repeat']
elif version == 2:
- # Strip the last state (it is not part of the scheduled measurement)
- measurement['energy_trace'].pop()
repeat = ptalog['opt']['repeat']
- if self._measurement_is_valid_01(measurement):
- self._merge_online_and_offline(measurement)
- num_valid += 1
- else:
- vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
- ar = self.filenames[measurement['fileno']],
- m = measurement['info'].name,
- e = measurement['error']))
+ if version == 0 or version == 1:
+ if self._measurement_is_valid_01(measurement):
+ self._merge_online_and_offline(measurement)
+ num_valid += 1
+ else:
+ vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
+ ar = self.filenames[measurement['fileno']],
+ m = measurement['info'].name,
+ e = measurement['error']))
+ elif version == 2:
+ if self._measurement_is_valid_2(measurement):
+ self._merge_online_and_etlog(measurement)
+ num_valid += 1
+ else:
+ vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
+ ar = self.filenames[measurement['fileno']],
+ m = measurement['info'].name,
+ e = measurement['error']))
vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
num_valid = num_valid,
num_total = len(measurements)))
@@ -1040,6 +1153,8 @@ class RawData:
elif version == 1:
self.traces = self._concatenate_traces(map(lambda x: x['expected_trace'], measurements))
self.traces = self._concatenate_traces(self.traces_by_fileno)
+ elif version == 2:
+ self.traces = self._concatenate_traces(self.traces_by_fileno)
self.preprocessing_stats = {
'num_runs' : len(measurements),
'num_valid' : num_valid
@@ -2029,13 +2144,19 @@ class EnergyTraceLog:
and a dfatool-generated benchmark. An EnergyTrace log consits of a series
of measurements. Each measurement has a timestamp, mean current, voltage,
and cumulative energy since start of measurement.
+
+ Note that the baseline power draw of board and peripherals is not subtracted
+ at the moment.
"""
def __init__(self, voltage: float, state_duration: int, transition_names: list):
+ """
+ :param state_duration: state duration [ms]
+ """
self.voltage = voltage
- self.state_duration = state_duration
+ self.state_duration = state_duration * 1e-3
self.transition_names = transition_names
- self.is_error = False
+ self.verbose = True
self.errors = list()
def load_data(self, log_data):
@@ -2072,7 +2193,7 @@ class EnergyTraceLog:
self.sample_rate = data_count / (m_duration_us * 1e-6)
- print('got {} samples with {} seconds of log data ({} Hz)'.format(data_count, m_duration_us * 1e-6, self.sample_rate))
+ vprint(self.verbose, 'got {} samples with {} seconds of log data ({} Hz)'.format(data_count, m_duration_us * 1e-6, self.sample_rate))
return self.interval_start_timestamp, self.interval_duration, self.interval_power
@@ -2080,11 +2201,36 @@ class EnergyTraceLog:
# (letzteres am besten per binary search)
# Damit die anderen Funktionen unfucken, Zustandsleistung bestimmen etc.
+ def ts_to_index(self, timestamp):
+ """
+ Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index.
+
+ Returns the index of the interval which timestamp is part of.
+ """
+ return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp))
+
+ def _ts_to_index(self, timestamp, left_index, right_index):
+ if left_index == right_index:
+ return left_index
+ if left_index + 1 == right_index:
+ return left_index
+
+ mid_index = left_index + (right_index - left_index) // 2
+
+ # I'm feeling lucky
+ if timestamp > self.interval_start_timestamp[mid_index] and timestamp <= self.interval_start_timestamp[mid_index] + self.interval_duration[mid_index]:
+ return mid_index
+
+ if timestamp <= self.interval_start_timestamp[mid_index]:
+ return self._ts_to_index(timestamp, left_index, mid_index)
+
+ return self._ts_to_index(timestamp, mid_index, right_index)
+
def analyze_states(self, interval_start_timestamp, interval_duration, interval_power, traces, offline_index: int):
u"""
Split log data into states and transitions and return duration, energy, and mean power for each element.
- :param offline_index: Use traces[*]['trace'][*]['offline_aggregates']['duration'][offline_index] to find sync codes
+ :param offline_index: This function uses traces[*]['trace'][*]['offline_aggregates']['duration'][offline_index] to find sync codes
:param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
:param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
@@ -2123,21 +2269,49 @@ class EnergyTraceLog:
for name, duration in expected_transitions:
bc, start, stop, end = self.find_barcode(interval_start_timestamp, interval_power, next_barcode)
if bc is None:
- print('[!!!] did not find transition "{}"'.format(name))
+ vprint(self.verbose, '[!!!] did not find transition "{}"'.format(name))
break
- next_barcode = end + self.state_duration * 1e-3 + duration
- print('{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(offline_index, bc, start, stop, end))
+ next_barcode = end + self.state_duration + duration
+ vprint(self.verbose, '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(offline_index, bc, start, stop, end))
if bc != name:
- print('[!!!] mismatch: expected "{}", got "{}"'.format(name, bc))
- print('{} estimated transition area: {:0.3f} .. {:0.3f} seconds'.format(offline_index, end, end + duration))
+ vprint(self.verbose, '[!!!] mismatch: expected "{}", got "{}"'.format(name, bc))
+ vprint(self.verbose, '{} estimated transition area: {:0.3f} .. {:0.3f} seconds'.format(offline_index, end, end + duration))
+
+ transition_start_index = self.ts_to_index(end)
+ transition_done_index = self.ts_to_index(end + duration) + 1
+ state_start_index = transition_done_index
+ state_done_index = self.ts_to_index(end + duration + self.state_duration) + 1
+
+ vprint(self.verbose, '{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds'.format(offline_index, transition_start_index / self.sample_rate, transition_done_index / self.sample_rate))
energy_trace.append({
'isa': 'transition',
+ 'W_mean' : np.mean(self.interval_power[transition_start_index : transition_done_index]),
+ 'W_std' : np.std(self.interval_power[transition_start_index : transition_done_index]),
+ 's' : duration,
+ 's_coarse' : self.interval_start_timestamp[transition_done_index] - self.interval_start_timestamp[transition_start_index]
+
})
+
+ if len(energy_trace) > 1:
+ energy_trace[-1]['W_mean_delta_prev'] = energy_trace[-1]['W_mean'] - energy_trace[-2]['W_mean']
+
energy_trace.append({
- 'isa': 'state'
+ 'isa': 'state',
+ 'W_mean' : np.mean(self.interval_power[state_start_index : state_done_index]),
+ 'W_std' : np.std(self.interval_power[state_start_index : state_done_index]),
+ 's' : self.state_duration,
+ 's_coarse' : self.interval_start_timestamp[state_done_index] - self.interval_start_timestamp[state_start_index]
})
+ energy_trace[-2]['W_mean_delta_next'] = energy_trace[-2]['W_mean'] - energy_trace[-1]['W_mean']
+
+ expected_transition_count = len(expected_transitions)
+ recovered_transition_ount = len(energy_trace) // 2
+
+ if expected_transition_count != recovered_transition_ount:
+ self.errors.append('Expected {:d} transitions, got {:d}'.format(expected_transition_count, recovered_transition_ount))
+
return energy_trace
def find_first_sync(self, interval_ts, interval_power):
@@ -2169,7 +2343,7 @@ class EnergyTraceLog:
# LED Power is approx. 30 mW, use 15 mW above surrounding median as threshold
sync_threshold_power = np.median(interval_power[start_position - lookaround : start_position + lookaround]) + 15e-3
- print('looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW'.format(start_ts, sync_threshold_power * 1e3))
+ vprint(self.verbose, 'looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW'.format(start_ts, sync_threshold_power * 1e3))
sync_area_start = None
sync_start_ts = None
@@ -2187,7 +2361,7 @@ class EnergyTraceLog:
barcode_data = interval_power[sync_area_start : sync_area_end]
- print('barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)'.format(sync_start_ts, sync_end_ts, len(barcode_data)))
+ vprint(self.verbose, 'barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)'.format(sync_start_ts, sync_end_ts, len(barcode_data)))
bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)
@@ -2258,7 +2432,7 @@ class EnergyTraceLog:
return content, sym_start, sym_end, padding_bits
else:
- print('unable to find barcode')
+ vprint(self.verbose, 'unable to find barcode')
return None, None, None, None
@@ -2298,7 +2472,7 @@ class MIMOSA:
def charge_to_current_nocal(self, charge):
u"""
Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration.
-
+
:param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file`
:returns: numpy array of mean currents (µA per 10µs)
diff --git a/lib/parameters.py b/lib/parameters.py
index 27b1a4e..00ae4aa 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -408,9 +408,6 @@ class ParamStats:
stats_queue = list()
- # Note: This is deliberately single-threaded. The overhead incurred
- # by multiprocessing is higher than the speed gained by parallel
- # computation of statistics measures.
for state_or_tran in by_name.keys():
self.stats[state_or_tran] = dict()
self.distinct_values_by_param_index[state_or_tran] = distinct_param_values(by_name, state_or_tran)