diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2019-11-18 12:16:56 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2019-11-18 12:16:56 +0100 |
commit | 7c7e4b650c00e8a69da16b12ab301bcbcf01b1a8 (patch) | |
tree | 138745f82d79e0ec61499e8504691b734d561dbc /lib | |
parent | cd57ef9d7817529c86dfa798ce7350c8d4c21038 (diff) |
EnergyTraceLog: Finish parser. model analysis is working.
Diffstat (limited to 'lib')
-rw-r--r-- | lib/dfatool.py | 230 | ||||
-rw-r--r-- | lib/parameters.py | 3 |
2 files changed, 202 insertions, 31 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index e01ed1c..bd210be 100644 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -394,9 +394,9 @@ def _preprocess_etlog(measurement): 'fileno' : measurement['fileno'], 'repeat_id' : measurement['repeat_id'], 'info' : measurement['info'], - 'expcted_trace' : measurement['expected_trace'], + 'expected_trace' : measurement['expected_trace'], 'energy_trace' : states_and_transitions, - 'has_mimosa_error' : etlog.is_error, + 'has_mimosa_error' : len(etlog.errors) > 0, 'mimosa_errors' : etlog.errors, } @@ -605,6 +605,41 @@ class RawData: # state_duration is stored as ms, not us return offline['us'] > state_duration * 1500 + def _measurement_is_valid_2(self, processed_data): + """ + Check if a dfatool v2 measurement is valid. + + processed_data layout: + 'fileno' : measurement['fileno'], + 'info' : measurement['info'], + 'energy_trace' : etlog.analyze_states() + A sequence of unnamed, unparameterized states and transitions with + power and timing data + 'expected_trace' : trace from PTA DFS (with parameter data) + etlog.analyze_states returns a list of (alternating) states and transitions. + Each element is a dict containing: + - isa: 'state' oder 'transition' + - W_mean: Mittelwert der (kalibrierten) Leistungsaufnahme + - W_std: Standardabweichung der (kalibrierten) Leistungsaufnahme + - s: duration + + if isa == 'transition': + - W_mean_delta_prev: Differenz zwischen W_mean und W_mean des vorherigen Zustands + - W_mean_delta_next: Differenz zwischen W_mean und W_mean des Folgezustands + """ + setup = self.setup_by_fileno[processed_data['fileno']] + traces = processed_data['expected_trace'] + + # Check for low-level parser errors + if processed_data['has_mimosa_error']: + processed_data['error'] = '; '.join(processed_data['mimosa_errors']) + return False + + # Note that the low-level parser (EnergyTraceLog) already checks + # whether the transition count is correct + + return True + def _measurement_is_valid_01(self, processed_data): """ Check if a dfatool v0 or v1 measurement is valid. @@ -617,7 +652,7 @@ class RawData: 'calibration' : caldata, 'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc) A sequence of unnamed, unparameterized states and transitions with - energy and timing data + power and timing data 'expected_trace' : trace from PTA DFS (with parameter data) mim.analyze_states returns a list of (alternating) states and transitions. Each element is a dict containing: @@ -801,6 +836,76 @@ class RawData: online_trace_part['offline_aggregates']['timeout'].append( offline_trace_part['timeout']) + def _merge_online_and_etlog(self, measurement): + # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline'] + # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place + # (appends data from measurement['energy_trace']) + online_datapoints = [] + traces = self.traces_by_fileno[measurement['fileno']] + for run_idx, run in enumerate(traces): + for trace_part_idx in range(len(run['trace'])): + online_datapoints.append((run_idx, trace_part_idx)) + for offline_idx, online_ref in enumerate(online_datapoints): + online_run_idx, online_trace_part_idx = online_ref + offline_trace_part = measurement['energy_trace'][offline_idx] + online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx] + + if not 'offline' in online_trace_part: + online_trace_part['offline'] = [offline_trace_part] + else: + online_trace_part['offline'].append(offline_trace_part) + + paramkeys = sorted(online_trace_part['parameter'].keys()) + + paramvalues = list() + + for paramkey in paramkeys: + if type(online_trace_part['parameter'][paramkey]) is list: + paramvalues.append(soft_cast_int(online_trace_part['parameter'][paramkey][measurement['repeat_id']])) + else: + paramvalues.append(soft_cast_int(online_trace_part['parameter'][paramkey])) + + # NB: Unscheduled transitions do not have an 'args' field set. + # However, they should only be caused by interrupts, and + # interrupts don't have args anyways. + if arg_support_enabled and 'args' in online_trace_part: + paramvalues.extend(map(soft_cast_int, online_trace_part['args'])) + + # only if isa == 'state' + if 'offline_aggregates' not in online_trace_part: + online_trace_part['offline_aggregates'] = { + 'duration' : list() + } + + offline_aggregates = online_trace_part['offline_aggregates'] + + if not 'power' in offline_aggregates: + online_trace_part['offline_attributes'] = ['power', 'duration', 'energy'] + offline_aggregates['power'] = list() + offline_aggregates['power_std'] = list() + offline_aggregates['energy'] = list() + offline_aggregates['paramkeys'] = list() + offline_aggregates['param'] = list() + + #if online_trace_part['isa'] == 'transitions': + # online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next']) + # offline_aggregates['rel_energy_prev'] = list() + # offline_aggregates['rel_energy_next'] = list() + + offline_aggregates['power'].append(offline_trace_part['W_mean'] * 1e6) + offline_aggregates['power_std'].append(offline_trace_part['W_std'] * 1e6) + offline_aggregates['energy'].append(offline_trace_part['W_mean'] * offline_trace_part['s'] * 1e12) + offline_aggregates['paramkeys'].append(paramkeys) + offline_aggregates['param'].append(paramvalues) + + if online_trace_part['isa'] == 'state': + offline_aggregates['duration'].append(offline_trace_part['s'] * 1e6) + + #if online_trace_part['isa'] == 'transition': + # offline_aggregates['rel_energy_prev'].append(offline_trace_part['W_mean_delta_prev'] * offline_trace_part['s'] * 1e12) + # offline_aggregates['rel_energy_next'].append(offline_trace_part['W_mean_delta_next'] * offline_trace_part['s'] * 1e12) + + def _concatenate_traces(self, list_of_traces): trace_output = list() for trace in list_of_traces: @@ -1014,24 +1119,32 @@ class RawData: # Strip the last state (it is not part of the scheduled measurement) measurement['energy_trace'].pop() repeat = 0 - elif version == 1 or version == 2: + elif version == 1: # The first online measurement is the UNINITIALIZED state. In v1, # it is not part of the expected PTA trace -> remove it. measurement['energy_trace'].pop(0) repeat = ptalog['opt']['repeat'] elif version == 2: - # Strip the last state (it is not part of the scheduled measurement) - measurement['energy_trace'].pop() repeat = ptalog['opt']['repeat'] - if self._measurement_is_valid_01(measurement): - self._merge_online_and_offline(measurement) - num_valid += 1 - else: - vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format( - ar = self.filenames[measurement['fileno']], - m = measurement['info'].name, - e = measurement['error'])) + if version == 0 or version == 1: + if self._measurement_is_valid_01(measurement): + self._merge_online_and_offline(measurement) + num_valid += 1 + else: + vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format( + ar = self.filenames[measurement['fileno']], + m = measurement['info'].name, + e = measurement['error'])) + elif version == 2: + if self._measurement_is_valid_2(measurement): + self._merge_online_and_etlog(measurement) + num_valid += 1 + else: + vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format( + ar = self.filenames[measurement['fileno']], + m = measurement['info'].name, + e = measurement['error'])) vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format( num_valid = num_valid, num_total = len(measurements))) @@ -1040,6 +1153,8 @@ class RawData: elif version == 1: self.traces = self._concatenate_traces(map(lambda x: x['expected_trace'], measurements)) self.traces = self._concatenate_traces(self.traces_by_fileno) + elif version == 2: + self.traces = self._concatenate_traces(self.traces_by_fileno) self.preprocessing_stats = { 'num_runs' : len(measurements), 'num_valid' : num_valid @@ -2029,13 +2144,19 @@ class EnergyTraceLog: and a dfatool-generated benchmark. An EnergyTrace log consits of a series of measurements. Each measurement has a timestamp, mean current, voltage, and cumulative energy since start of measurement. + + Note that the baseline power draw of board and peripherals is not subtracted + at the moment. """ def __init__(self, voltage: float, state_duration: int, transition_names: list): + """ + :param state_duration: state duration [ms] + """ self.voltage = voltage - self.state_duration = state_duration + self.state_duration = state_duration * 1e-3 self.transition_names = transition_names - self.is_error = False + self.verbose = True self.errors = list() def load_data(self, log_data): @@ -2072,7 +2193,7 @@ class EnergyTraceLog: self.sample_rate = data_count / (m_duration_us * 1e-6) - print('got {} samples with {} seconds of log data ({} Hz)'.format(data_count, m_duration_us * 1e-6, self.sample_rate)) + vprint(self.verbose, 'got {} samples with {} seconds of log data ({} Hz)'.format(data_count, m_duration_us * 1e-6, self.sample_rate)) return self.interval_start_timestamp, self.interval_duration, self.interval_power @@ -2080,11 +2201,36 @@ class EnergyTraceLog: # (letzteres am besten per binary search) # Damit die anderen Funktionen unfucken, Zustandsleistung bestimmen etc. + def ts_to_index(self, timestamp): + """ + Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index. + + Returns the index of the interval which timestamp is part of. + """ + return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp)) + + def _ts_to_index(self, timestamp, left_index, right_index): + if left_index == right_index: + return left_index + if left_index + 1 == right_index: + return left_index + + mid_index = left_index + (right_index - left_index) // 2 + + # I'm feeling lucky + if timestamp > self.interval_start_timestamp[mid_index] and timestamp <= self.interval_start_timestamp[mid_index] + self.interval_duration[mid_index]: + return mid_index + + if timestamp <= self.interval_start_timestamp[mid_index]: + return self._ts_to_index(timestamp, left_index, mid_index) + + return self._ts_to_index(timestamp, mid_index, right_index) + def analyze_states(self, interval_start_timestamp, interval_duration, interval_power, traces, offline_index: int): u""" Split log data into states and transitions and return duration, energy, and mean power for each element. - :param offline_index: Use traces[*]['trace'][*]['offline_aggregates']['duration'][offline_index] to find sync codes + :param offline_index: This function uses traces[*]['trace'][*]['offline_aggregates']['duration'][offline_index] to find sync codes :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs) :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges` @@ -2123,21 +2269,49 @@ class EnergyTraceLog: for name, duration in expected_transitions: bc, start, stop, end = self.find_barcode(interval_start_timestamp, interval_power, next_barcode) if bc is None: - print('[!!!] did not find transition "{}"'.format(name)) + vprint(self.verbose, '[!!!] did not find transition "{}"'.format(name)) break - next_barcode = end + self.state_duration * 1e-3 + duration - print('{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(offline_index, bc, start, stop, end)) + next_barcode = end + self.state_duration + duration + vprint(self.verbose, '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(offline_index, bc, start, stop, end)) if bc != name: - print('[!!!] mismatch: expected "{}", got "{}"'.format(name, bc)) - print('{} estimated transition area: {:0.3f} .. {:0.3f} seconds'.format(offline_index, end, end + duration)) + vprint(self.verbose, '[!!!] mismatch: expected "{}", got "{}"'.format(name, bc)) + vprint(self.verbose, '{} estimated transition area: {:0.3f} .. {:0.3f} seconds'.format(offline_index, end, end + duration)) + + transition_start_index = self.ts_to_index(end) + transition_done_index = self.ts_to_index(end + duration) + 1 + state_start_index = transition_done_index + state_done_index = self.ts_to_index(end + duration + self.state_duration) + 1 + + vprint(self.verbose, '{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds'.format(offline_index, transition_start_index / self.sample_rate, transition_done_index / self.sample_rate)) energy_trace.append({ 'isa': 'transition', + 'W_mean' : np.mean(self.interval_power[transition_start_index : transition_done_index]), + 'W_std' : np.std(self.interval_power[transition_start_index : transition_done_index]), + 's' : duration, + 's_coarse' : self.interval_start_timestamp[transition_done_index] - self.interval_start_timestamp[transition_start_index] + }) + + if len(energy_trace) > 1: + energy_trace[-1]['W_mean_delta_prev'] = energy_trace[-1]['W_mean'] - energy_trace[-2]['W_mean'] + energy_trace.append({ - 'isa': 'state' + 'isa': 'state', + 'W_mean' : np.mean(self.interval_power[state_start_index : state_done_index]), + 'W_std' : np.std(self.interval_power[state_start_index : state_done_index]), + 's' : self.state_duration, + 's_coarse' : self.interval_start_timestamp[state_done_index] - self.interval_start_timestamp[state_start_index] }) + energy_trace[-2]['W_mean_delta_next'] = energy_trace[-2]['W_mean'] - energy_trace[-1]['W_mean'] + + expected_transition_count = len(expected_transitions) + recovered_transition_ount = len(energy_trace) // 2 + + if expected_transition_count != recovered_transition_ount: + self.errors.append('Expected {:d} transitions, got {:d}'.format(expected_transition_count, recovered_transition_ount)) + return energy_trace def find_first_sync(self, interval_ts, interval_power): @@ -2169,7 +2343,7 @@ class EnergyTraceLog: # LED Power is approx. 30 mW, use 15 mW above surrounding median as threshold sync_threshold_power = np.median(interval_power[start_position - lookaround : start_position + lookaround]) + 15e-3 - print('looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW'.format(start_ts, sync_threshold_power * 1e3)) + vprint(self.verbose, 'looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW'.format(start_ts, sync_threshold_power * 1e3)) sync_area_start = None sync_start_ts = None @@ -2187,7 +2361,7 @@ class EnergyTraceLog: barcode_data = interval_power[sync_area_start : sync_area_end] - print('barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)'.format(sync_start_ts, sync_end_ts, len(barcode_data))) + vprint(self.verbose, 'barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)'.format(sync_start_ts, sync_end_ts, len(barcode_data))) bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data) @@ -2258,7 +2432,7 @@ class EnergyTraceLog: return content, sym_start, sym_end, padding_bits else: - print('unable to find barcode') + vprint(self.verbose, 'unable to find barcode') return None, None, None, None @@ -2298,7 +2472,7 @@ class MIMOSA: def charge_to_current_nocal(self, charge): u""" Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration. - + :param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file` :returns: numpy array of mean currents (µA per 10µs) diff --git a/lib/parameters.py b/lib/parameters.py index 27b1a4e..00ae4aa 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -408,9 +408,6 @@ class ParamStats: stats_queue = list() - # Note: This is deliberately single-threaded. The overhead incurred - # by multiprocessing is higher than the speed gained by parallel - # computation of statistics measures. for state_or_tran in by_name.keys(): self.stats[state_or_tran] = dict() self.distinct_values_by_param_index[state_or_tran] = distinct_param_values(by_name, state_or_tran) |