summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-08-13 07:39:14 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-08-13 07:39:14 +0200
commit97a523327fae89ee0d6e245f226f920b0b67f6d7 (patch)
tree5aa07a7a5782ab6ad09c63a70acad6f0a0f95177 /lib
parent975727844a97ad1aaacacfd8799bec5cde1715aa (diff)
_try_fits: documentation, minimal refactoring, note a possible bug
Diffstat (limited to 'lib')
-rwxr-xr-xlib/dfatool.py71
1 files changed, 60 insertions, 11 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index fbc5c7f..ecd3051 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -902,15 +902,51 @@ class ParallelParamFit:
self.results = pool.map(_try_fits_parallel, self.fit_queue)
def _try_fits_parallel(arg):
+ """
+ Call _try_fits(*arg['args']) and return arg['key'] and the _try_fits result.
+
+ Must be a global function as it is called from a multiprocessing Pool.
+ """
return {
'key' : arg['key'],
'result' : _try_fits(*arg['args'])
}
-def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functions_enabled = False):
+def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functions_enabled = False, boolean_parameters = list()):
+ """
+ Determine goodness-of-fit for prediction of `by_param[(state_or_tran, *)][model_attribute]` dependence on `param_index` using various functions.
+
+ This is done by varying `param_index` while keeping all other parameters constant and doing one least squares optimization for each function and for each combination of the remaining parameters.
+ The value of the parameter corresponding to `param_index` (e.g. txpower or packet length) is the sole input to the model function.
+
+ Returns a dictionary with the following elements:
+ best -- name of the best-fitting function (see `analytic.functions`)
+ best_rmsd -- mean Root Mean Square Deviation of best-fitting function over all combinations of the remaining parameters
+ mean_rmsd -- mean Root Mean Square Deviation of a reference model using the mean of its respective input data as model value
+ median_rmsd -- mean Root Mean Square Deviation of a reference model using the median of its respective input data as model value
+ results -- mean goodness-of-fit measures for the individual functions. See `analytic.functions` for keys and `aggregate_measures` for values
+
+ arguments
+ ---
+
+ by_param: measurements partitioned by state/transition/... name and parameter values.
+ Example: `{('foo', (0, 2)): {'bar': [2]}, ('foo', (0, 4)): {'bar': [4]}, ('foo', (0, 6)): {'bar': [6]}}`
+
+ state_or_tran: state/transition/... name for which goodness-of-fit will be calculated (first element of by_param key tuple).
+ Example: `'foo'`
+
+ model_attribute: attribute for which goodness-of-fit will be calculated.
+ Example: `'bar'`
+
+ param_index -- index of the parameter used as model input
+ safe_functions_enabled -- Include "safe" variants of functions with limited argument range.
+ """
+
functions = analytic.functions(safe_functions_enabled = safe_functions_enabled)
+ #print('_try_fits(..., {}, {}, {})'.format(state_or_tran, model_attribute, param_index))
+
for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
# We might remove elements from 'functions' while iterating over
@@ -928,19 +964,29 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi
'median' : []
}
results = {}
-
+ results_by_param = {}
+
+ # TODO diese Funktion ist unfair, wenn ein Parameter in einer Variante deutlich mehr unterschiedliche Werte
+ # aufweist als bei der Kombination mit anderen Parametern. Gibt es z.B. die Parameterkombinationen
+ # (0,2), (0, 4), (0,6), (0,8), (0, 10), 0,12), (2, 2), (2, 4), (2, 6) und wird der Parameter mit Index 1 bestimmt,
+ # so haben die Messwerte für Parameter-Index 0 == 0 mehr Gewicht als die für Parameter-Index 0 == 2.
+ # Bei klassischen AEMR-generierten Benchmarks macht das nichts, weil für alle Kombinationen die gleichen Parameterwerte
+ # genutzt werden, das kann sich aber noch ändern...
+ # for each parameter combination:
for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
X = []
Y = []
num_valid = 0
num_total = 0
- for k, v in by_param.items():
- if param_slice_eq(k, param_key, param_index):
- num_total += 1
- if is_numeric(k[1][param_index]):
- num_valid += 1
- X.extend([float(k[1][param_index])] * len(v[model_attribute]))
- Y.extend(v[model_attribute])
+ # for each value of the parameter denoted by param_index (all other parameters remain the same):
+ for k, v in filter(lambda kv: param_slice_eq(kv[0], param_key, param_index), by_param.items()):
+ num_total += 1
+ if is_numeric(k[1][param_index]):
+ num_valid += 1
+ X.extend([float(k[1][param_index])] * len(v[model_attribute]))
+ Y.extend(v[model_attribute])
+
+ #print(param_key, X, Y)
if num_valid > 2:
X = np.array(X)
@@ -1037,7 +1083,7 @@ class AnalyticModel:
assess -- calculate model quality
"""
- def __init__(self, by_name, parameters, arg_count = None, verbose = True):
+ def __init__(self, by_name, parameters, arg_count = None, verbose = True, use_corrcoef = False):
"""
Create a new AnalyticModel and compute parameter statistics.
@@ -1067,6 +1113,8 @@ class AnalyticModel:
}
`parameters`: List of parameter names
`verbose`: Print debug/info output while generating the model?
+ use_corrcoef -- use correlation coefficient instead of stddev comparison
+ to detect whether a model attribute depends on a parameter
"""
self.cache = dict()
self.by_name = by_name
@@ -1074,11 +1122,12 @@ class AnalyticModel:
self.names = sorted(by_name.keys())
self.parameters = sorted(parameters)
self.verbose = verbose
+ self._use_corrcoef = use_corrcoef
self._num_args = arg_count
if self._num_args is None:
self._num_args = _num_args_from_by_name(by_name)
- self.stats = ParamStats(self.by_name, self.by_param, self.parameters, self._num_args, verbose = verbose)
+ self.stats = ParamStats(self.by_name, self.by_param, self.parameters, self._num_args, verbose = verbose, use_corrcoef = use_corrcoef)
def _get_model_from_dict(self, model_dict, model_function):
model = {}