summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2021-02-22 16:17:18 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2021-02-22 16:17:18 +0100
commit3b663aa49d32a3a23c53c3fa682b3b6b74d7c2ed (patch)
treebdd54a7ed95d72698da7be8482ec7b6e5a27354a /lib
parent75aa9086b84d875b20bf5db38a987159a633cf6b (diff)
add simple sub-state model accessor and evaluation
Diffstat (limited to 'lib')
-rw-r--r--lib/model.py36
1 files changed, 34 insertions, 2 deletions
diff --git a/lib/model.py b/lib/model.py
index 9ac4560..44272c8 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -806,7 +806,6 @@ class PTAModel(AnalyticModel):
self.pelt = PELT(**pelt)
self.find_substates()
- print(self.submodel_by_nc)
else:
self.pelt = None
@@ -828,6 +827,37 @@ class PTAModel(AnalyticModel):
for key in elem["attributes"]:
elem[key] = np.array(elem[key])
+ def get_fitted_sub(self, use_mean=False, safe_functions_enabled=False):
+
+ param_model_getter, param_info_getter = self.get_fitted(
+ use_mean=use_mean, safe_functions_enabled=safe_functions_enabled
+ )
+
+ def model_getter(name, key, **kwargs):
+ if key != "power":
+ return param_model_getter(name, key, **kwargs)
+
+ try:
+ substate_count = round(param_model_getter(name, "substate_count"))
+ except KeyError:
+ return param_model_getter(name, key, **kwargs)
+ if substate_count == 1:
+ return param_model_getter(name, key, **kwargs)
+
+ cumulative_energy = 0
+ total_duration = 0
+ substate_model, _ = self.submodel_by_nc[(name, substate_count)].get_fitted()
+ for i in range(substate_count):
+ sub_name = f"{name}.{i+1}({substate_count})"
+ cumulative_energy += substate_model(
+ sub_name, "duration", **kwargs
+ ) * substate_model(sub_name, "power", **kwargs)
+ total_duration += substate_model(sub_name, "duration", **kwargs)
+
+ return cumulative_energy / total_duration
+
+ return model_getter, param_info_getter
+
# This heuristic is very similar to the "function is not much better than
# median" checks in get_fitted. So far, doing it here as well is mostly
# a performance and not an algorithm quality decision.
@@ -991,7 +1021,9 @@ class PTAModel(AnalyticModel):
# data units are s / W, models use µs / µW
durations.extend(np.array(run[substate_index]["duration"]) * 1e6)
powers.extend(np.array(run[substate_index]["power"]) * 1e6)
- param_values.extend([param for i in run[substate_index]["duration"]])
+ param_values.extend(
+ [list(param) for i in run[substate_index]["duration"]]
+ )
by_name[sub_name] = {
"isa": "state",