summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2018-04-23 10:35:22 +0200
committerDaniel Friesel <derf@finalrewind.org>2018-04-23 10:35:22 +0200
commit13810886493d2c7d8a3df9b9bf84392d1054e1c2 (patch)
treeaed3b9399a49d43755c9a582d415dc9aaac136a7 /lib
parent44614e6a88a71fb09d7e5cd5e3bf866aefc1f29c (diff)
add automata simulation code and parameter support
Diffstat (limited to 'lib')
-rwxr-xr-xlib/automata.py111
-rwxr-xr-xlib/dfatool.py1
2 files changed, 100 insertions, 12 deletions
diff --git a/lib/automata.py b/lib/automata.py
index 0e6cc28..c61b065 100755
--- a/lib/automata.py
+++ b/lib/automata.py
@@ -1,44 +1,133 @@
class Transition:
- def __init__(self, orig_state, dest_state, name, arguments, arg_param_map):
+ def __init__(self, orig_state, dest_state, name,
+ energy = 0, energy_function = None,
+ duration = 0, duration_function = None,
+ timeout = 0, timeout_function = None,
+ is_interrupt = False,
+ arguments = [], param_update_function = None):
self.name = name
self.origin = orig_state
self.destination = dest_state
- self.arguments = list(arguments)
+ self.energy = energy
+ self.energy_function = energy_function
+ self.duration = duration
+ self.duration_function = duration_function
+ self.timeout = timeout
+ self.timeout_function = timeout_function
+ self.is_interrupt = is_interrupt
+ self.arguments = arguments.copy()
+ self.param_update_function = param_update_function
+
+ def get_duration(self, parameters = [], args = []):
+ if self.duration_function:
+ return self.duration_function(parameters, args)
+ return self.duration
+
+ def get_energy(self, parameters = [], args = []):
+ if self.energy_function:
+ return self.energy_function(parameters, args)
+ return self.energy
+
+ def get_timeout(self, parameters = []):
+ if self.timeout_function:
+ return self.timeout_function(parameters)
+ return self.timeout
+
+ def get_params_after_transition(self, parameters, args = []):
+ if self.param_update_function:
+ return self.param_update_function(parameters, args)
+ return parameters
class State:
- def __init__(self, name):
+ def __init__(self, name, power = 0, power_function = None):
self.name = name
- self.outgoing_transitions = []
+ self.power = power
+ self.power_function = power_function
+ self.outgoing_transitions = {}
def add_outgoing_transition(self, new_transition):
- self.outgoing_transitions.append(new_transition)
+ self.outgoing_transitions[new_transition.name] = new_transition
+
+ def get_energy(self, duration, parameters = []):
+ if self.power_function:
+ return self.power_function(parameters) * duration
+ return self.power * duration
+
+ def get_transition(self, transition_name):
+ return self.outgoing_transitions[transition_name]
+
+ def has_interrupt_transitions(self):
+ for trans in self.outgoing_transitions.values():
+ if trans.is_interrupt:
+ return True
+ return False
+
+ def get_next_interrupt(self, parameters):
+ interrupts = filter(lambda x: x.is_interrupt, self.outgoing_transitions.values())
+ interrupts = sorted(interrupts, key = lambda x: x.get_timeout(parameters))
+ return interrupts[0]
def dfs(self, depth):
if depth == 0:
- for trans in self.outgoing_transitions:
+ for trans in self.outgoing_transitions.values():
yield [trans.name]
else:
- for trans in self.outgoing_transitions:
+ for trans in self.outgoing_transitions.values():
for suffix in trans.destination.dfs(depth - 1):
new_suffix = [trans.name]
new_suffix.extend(suffix)
yield new_suffix
class PTA:
- def __init__(self, state_names, parameters):
+ def __init__(self, state_names = [], parameters = [], initial_param_values = None):
self.states = dict([[state_name, State(state_name)] for state_name in state_names])
- self.parameters = list(parameters)
+ self.parameters = parameters.copy()
+ if initial_param_values:
+ self.initial_param_values = initial_param_values.copy()
+ else:
+ self.initial_param_values = [None for x in self.parameters]
self.transitions = []
if not 'UNINITIALIZED' in state_names:
self.states['UNINITIALIZED'] = State('UNINITIALIZED')
- def add_transition(self, orig_state, dest_state, function_name, arguments, arg_param_map):
+ def add_state(self, state_name, **kwargs):
+ self.states[state_name] = State(state_name, **kwargs)
+
+ def add_transition(self, orig_state, dest_state, function_name, **kwargs):
orig_state = self.states[orig_state]
dest_state = self.states[dest_state]
- new_transition = Transition(orig_state, dest_state, function_name, arguments, arg_param_map)
+ new_transition = Transition(orig_state, dest_state, function_name, **kwargs)
self.transitions.append(new_transition)
orig_state.add_outgoing_transition(new_transition)
def dfs(self, depth = 10, orig_state = 'UNINITIALIZED'):
return self.states[orig_state].dfs(depth)
+
+ def simulate(self, trace, orig_state = 'UNINITIALIZED'):
+ total_duration = 0.
+ total_energy = 0.
+ state = self.states[orig_state]
+ parameters = self.initial_param_values
+ for function in trace:
+ function_name = function[0]
+ function_args = function[1 : ]
+ if function_name == 'sleep':
+ duration = function_args[0]
+ total_energy += state.get_energy(duration, parameters)
+ total_duration += duration
+ else:
+ transition = state.get_transition(function_name)
+ total_duration += transition.get_duration(parameters, function_args)
+ total_energy += transition.get_energy(parameters, function_args)
+ parameters = transition.get_params_after_transition(parameters, function_args)
+ state = transition.destination
+ while (state.has_interrupt_transitions()):
+ transition = state.get_next_interrupt(parameters)
+ duration = transition.get_timeout(parameters)
+ total_duration += duration
+ total_energy += state.get_energy(duration, parameters)
+ parameters = transition.get_params_after_transition(parameters)
+ state = transition.destination
+
+ return total_energy, total_duration, state, parameters
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 5b8f69f..6e0e829 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -8,7 +8,6 @@ import numpy as np
import os
import re
from scipy import optimize
-from gplearn.genetic import SymbolicRegressor
from sklearn.metrics import r2_score
import struct
import sys