summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-02-01 08:27:19 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-02-01 08:27:19 +0100
commit8ebb9fc80fb9becf9951fdc8502eefa3eb3868c5 (patch)
tree5081c1602889ee6a3516222f51552441832efd80 /lib
parente488f05cb5b57cbfb33a92198bd3b269300558bd (diff)
move parameter detection / statistics methods to utils (for now)
Diffstat (limited to 'lib')
-rwxr-xr-xlib/dfatool.py94
-rw-r--r--lib/functions.py10
-rw-r--r--lib/utils.py92
3 files changed, 103 insertions, 93 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 535fb30..5c55993 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -15,7 +15,7 @@ from multiprocessing import Pool
from automata import PTA
from functions import analytic
from functions import AnalyticFunction
-from utils import is_numeric
+from utils import *
arg_support_enabled = True
@@ -528,25 +528,6 @@ class RawData:
'num_valid' : num_valid
}
-def _param_slice_eq(a, b, index):
- """
- Check if by_param keys a and b are identical, ignoring the parameter at index.
-
- parameters:
- a, b -- (state/transition name, [parameter0 value, parameter1 value, ...])
- index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.)
-
- Returns True iff a and b have the same state/transition name, and all
- parameters at positions != index are identical.
-
- example:
- ('foo', [1, 4]), ('foo', [2, 4]), 0 -> True
- ('foo', [1, 4]), ('foo', [2, 4]), 1 -> False
- """
- if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
- return True
- return False
-
def _try_fits_parallel(arg):
return {
@@ -582,7 +563,7 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi
num_valid = 0
num_total = 0
for k, v in by_param.items():
- if _param_slice_eq(k, param_key, param_index):
+ if param_slice_eq(k, param_key, param_index):
num_total += 1
if is_numeric(k[1][param_index]):
num_valid += 1
@@ -627,75 +608,6 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi
'results' : results
}
-def _all_params_are_numeric(data, param_idx):
- param_values = list(map(lambda x: x[param_idx], data['param']))
- if len(list(filter(is_numeric, param_values))) == len(param_values):
- return True
- return False
-
-def _compute_param_statistics(by_name, by_param, parameter_names, num_args, state_or_trans, key):
- ret = {
- 'std_static' : np.std(by_name[state_or_trans][key]),
- 'std_param_lut' : np.mean([np.std(by_param[x][key]) for x in by_param.keys() if x[0] == state_or_trans]),
- 'std_by_param' : {},
- 'std_by_arg' : [],
- 'corr_by_param' : {},
- 'corr_by_arg' : [],
- }
-
- for param_idx, param in enumerate(parameter_names):
- ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, key, param_idx)
- ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, key, param_idx)
- if arg_support_enabled and state_or_trans in num_args:
- for arg_index in range(num_args[state_or_trans]):
- ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, key, len(parameter_names) + arg_index))
- ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, key, len(parameter_names) + arg_index))
-
- return ret
-
-def _mean_std_by_param(by_param, state_or_tran, key, param_index):
- u"""
- Calculate the mean standard deviation for a static model where all parameters but param_index are constant.
-
- arguments:
- by_param -- measurements sorted by key/transition name and parameter values
- state_or_tran -- state or transition name (-> by_param[(state_or_tran, *)])
- key -- model attribute, e.g. 'power' or 'duration'
- (-> by_param[(state_or_tran, *)][key])
- param_index -- index of variable parameter
-
- Returns the mean standard deviation of all measurements of 'key'
- (e.g. power consumption or timeout) for state/transition 'state_or_tran' where
- parameter 'param_index' is dynamic and all other parameters are fixed.
- I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
- this function returns the mean of the standard deviations of (a=1, b=*, c=1),
- (a=1, b=*, c=2), and so on.
- """
- partitions = []
- for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
- param_partition = []
- for k, v in by_param.items():
- if _param_slice_eq(k, param_value, param_index):
- param_partition.extend(v[key])
- if len(param_partition):
- partitions.append(param_partition)
- else:
- print('[W] parameter value partition for {} is empty'.format(param_value))
- return np.mean([np.std(partition) for partition in partitions])
-
-def _corr_by_param(by_name, state_or_trans, key, param_index):
- if _all_params_are_numeric(by_name[state_or_trans], param_index):
- param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param']))))
- try:
- return np.corrcoef(by_name[state_or_trans][key], param_values)[0, 1]
- except FloatingPointError as fpe:
- # Typically happens when all parameter values are identical.
- # Building a correlation coefficient is pointless in this case
- # -> assume no correlation
- return 0.
- else:
- return 0.
-
class EnergyModel:
u"""
parameter-aware PTA-based energy model.
@@ -877,7 +789,7 @@ class EnergyModel:
self.stats[state_or_trans] = {}
for key in self.by_name[state_or_trans]['attributes']:
if key in self.by_name[state_or_trans]:
- self.stats[state_or_trans][key] = _compute_param_statistics(self.by_name, self.by_param, self._parameter_names, self._num_args, state_or_trans, key)
+ self.stats[state_or_trans][key] = compute_param_statistics(self.by_name, self.by_param, self._parameter_names, self._num_args, state_or_trans, key)
@classmethod
def from_model(self, model_data, parameter_names):
diff --git a/lib/functions.py b/lib/functions.py
index 22d7e46..c58db4f 100644
--- a/lib/functions.py
+++ b/lib/functions.py
@@ -162,7 +162,10 @@ class AnalyticFunction:
which must be a list or 1-D NumPy array containing the ground truth.
The parameter values in (state_or_tran, *) must be numeric for
all parameters this function depends on -- otherwise, the
- corresponding data will be left out.
+ corresponding data will be left out. Parameter values must be
+ ordered according to the order of parameter names used in
+ the ParamFunction constructor. Argument values (if any) always come after
+ parameters, in the order of their index in the function signature.
state_or_tran -- state or transition name, e.g. "TX" or "send"
model_attribute -- model attribute name, e.g. "power" or "duration"
@@ -214,7 +217,10 @@ class AnalyticFunction:
model_attribute -- model attribute name, e.g. "power" or "duration"
The ground truth is read from by_param[(state_or_tran, *)][model_attribute],
- which must be a list or 1-D NumPy array.
+ which must be a list or 1-D NumPy array. Parameter values must be
+ ordered according to the parameter names in the constructor. If
+ argument values are present, they must come after parameter values
+ in the order of their appearance in the function signature.
"""
X, Y, num_valid, num_total = self.get_fit_data(by_param, state_or_tran, model_attribute)
if num_valid > 2:
diff --git a/lib/utils.py b/lib/utils.py
index 405d148..b496a7b 100644
--- a/lib/utils.py
+++ b/lib/utils.py
@@ -1,3 +1,7 @@
+import numpy as np
+
+arg_support_enabled = True
+
def is_numeric(n):
if n == None:
return False
@@ -6,3 +10,91 @@ def is_numeric(n):
return True
except ValueError:
return False
+
+def param_slice_eq(a, b, index):
+ """
+ Check if by_param keys a and b are identical, ignoring the parameter at index.
+
+ parameters:
+ a, b -- (state/transition name, [parameter0 value, parameter1 value, ...])
+ index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.)
+
+ Returns True iff a and b have the same state/transition name, and all
+ parameters at positions != index are identical.
+
+ example:
+ ('foo', [1, 4]), ('foo', [2, 4]), 0 -> True
+ ('foo', [1, 4]), ('foo', [2, 4]), 1 -> False
+ """
+ if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
+ return True
+ return False
+
+def compute_param_statistics(by_name, by_param, parameter_names, num_args, state_or_trans, key):
+ ret = {
+ 'std_static' : np.std(by_name[state_or_trans][key]),
+ 'std_param_lut' : np.mean([np.std(by_param[x][key]) for x in by_param.keys() if x[0] == state_or_trans]),
+ 'std_by_param' : {},
+ 'std_by_arg' : [],
+ 'corr_by_param' : {},
+ 'corr_by_arg' : [],
+ }
+
+ for param_idx, param in enumerate(parameter_names):
+ ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, key, param_idx)
+ ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, key, param_idx)
+ if arg_support_enabled and state_or_trans in num_args:
+ for arg_index in range(num_args[state_or_trans]):
+ ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, key, len(parameter_names) + arg_index))
+ ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, key, len(parameter_names) + arg_index))
+
+ return ret
+
+def _mean_std_by_param(by_param, state_or_tran, key, param_index):
+ u"""
+ Calculate the mean standard deviation for a static model where all parameters but param_index are constant.
+
+ arguments:
+ by_param -- measurements sorted by key/transition name and parameter values
+ state_or_tran -- state or transition name (-> by_param[(state_or_tran, *)])
+ key -- model attribute, e.g. 'power' or 'duration'
+ (-> by_param[(state_or_tran, *)][key])
+ param_index -- index of variable parameter
+
+ Returns the mean standard deviation of all measurements of 'key'
+ (e.g. power consumption or timeout) for state/transition 'state_or_tran' where
+ parameter 'param_index' is dynamic and all other parameters are fixed.
+ I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
+ this function returns the mean of the standard deviations of (a=1, b=*, c=1),
+ (a=1, b=*, c=2), and so on.
+ """
+ partitions = []
+ for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
+ param_partition = []
+ for k, v in by_param.items():
+ if param_slice_eq(k, param_value, param_index):
+ param_partition.extend(v[key])
+ if len(param_partition):
+ partitions.append(param_partition)
+ else:
+ print('[W] parameter value partition for {} is empty'.format(param_value))
+ return np.mean([np.std(partition) for partition in partitions])
+
+def _corr_by_param(by_name, state_or_trans, key, param_index):
+ if _all_params_are_numeric(by_name[state_or_trans], param_index):
+ param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param']))))
+ try:
+ return np.corrcoef(by_name[state_or_trans][key], param_values)[0, 1]
+ except FloatingPointError as fpe:
+ # Typically happens when all parameter values are identical.
+ # Building a correlation coefficient is pointless in this case
+ # -> assume no correlation
+ return 0.
+ else:
+ return 0.
+
+def _all_params_are_numeric(data, param_idx):
+ param_values = list(map(lambda x: x[param_idx], data['param']))
+ if len(list(filter(is_numeric, param_values))) == len(param_values):
+ return True
+ return False