summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-05-10 13:07:41 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-05-10 13:07:41 +0200
commitb5f5e10a9f73d23b4500e616127bf217a671b535 (patch)
treed1dc321450f58d003513068c06c43c3c1212e2e4 /lib
parentec653977c37466c5df7cee0eea75a02232e4aa92 (diff)
CC1200 TX energy: Use energy model, not inaccurate power * duration
Diffstat (limited to 'lib')
-rw-r--r--lib/size_to_radio_energy.py85
1 files changed, 81 insertions, 4 deletions
diff --git a/lib/size_to_radio_energy.py b/lib/size_to_radio_energy.py
index 1cc9fd0..808ff9b 100644
--- a/lib/size_to_radio_energy.py
+++ b/lib/size_to_radio_energy.py
@@ -11,6 +11,8 @@ def get_class(radio_name: str):
"""Return model class for radio_name."""
if radio_name == 'CC1200tx':
return CC1200tx
+ if radio_name == 'NRF24L01tx':
+ return NRF24L01tx
if radio_name == 'NRF24L01dtx':
return NRF24L01dtx
@@ -37,6 +39,7 @@ class CC1200tx:
if type(params) != dict:
return CC1200tx.get_energy(_param_list_to_dict(CC1200tx, params))
+ # Mittlere TX-Leistung, gefitted von AEMR
power = 8.18053941e+04
power -= 1.24208376e+03 * np.sqrt(params['symbolrate'])
power -= 5.73742779e+02 * np.log(params['txbytes'])
@@ -46,24 +49,98 @@ class CC1200tx:
power -= 3.31365158e-01 * np.log(params['txbytes']) * (params['txpower'])**2
power += 1.32784945e-01 * np.sqrt(params['symbolrate']) * np.log(params['txbytes']) * (params['txpower'])**2
+ # txDone-Timeout, gefitted von AEMR
duration = 3.65513500e+02
duration += 8.01016526e+04 * 1/(params['symbolrate'])
duration -= 7.06364515e-03 * params['txbytes']
duration += 8.00029860e+03 * 1/(params['symbolrate']) * params['txbytes']
- return power * 1e-6 * duration * 1e-6
+ # TX-Energie, gefitted von AEMR
+ # Achtung: Energy ist in µJ, nicht (wie in AEMR-Transitionsmodellen üblich) in pJ
+
+ energy = 1.74383259e+01
+ energy += 6.29922138e+03 * 1/(params['symbolrate'])
+ energy += 1.13307135e-02 * params['txbytes']
+ energy -= 1.28121377e-04 * (params['txpower'])**2
+ energy += 6.29080184e+02 * 1/(params['symbolrate']) * params['txbytes']
+ energy += 1.25647926e+00 * 1/(params['symbolrate']) * (params['txpower'])**2
+ energy += 1.31996202e-05 * params['txbytes'] * (params['txpower'])**2
+ energy += 1.25676966e-01 * 1/(params['symbolrate']) * params['txbytes'] * (params['txpower'])**2
+
+ return energy * 1e-6
+
+ def get_energy_per_byte(params):
+ A = 8.18053941e+04
+ A -= 1.24208376e+03 * np.sqrt(params['symbolrate'])
+ A += 1.76945886e+01 * (params['txpower'])**2
+ A -= 6.99137635e-01 * np.sqrt(params['symbolrate']) * (params['txpower'])**2
+ B = -5.73742779e+02
+ B += 2.33469617e+02 * np.sqrt(params['symbolrate'])
+ B -= 3.31365158e-01 * (params['txpower'])**2
+ B += 1.32784945e-01 * np.sqrt(params['symbolrate']) * (params['txpower'])**2
+ C = 3.65513500e+02
+ C += 8.01016526e+04 * 1/(params['symbolrate'])
+ D = -7.06364515e-03
+ D += 8.00029860e+03 * 1/(params['symbolrate'])
+
+ x = params['txbytes']
+
+ # in pJ
+ de_dx = A * D + B * C * 1/x + B * D * (np.log(x) + 1)
+
+ # in µJ
+ de_dx = 1.13307135e-02
+ de_dx += 6.29080184e+02 * 1/(params['symbolrate'])
+ de_dx += 1.31996202e-05 * (params['txpower'])**2
+ de_dx += 1.25676966e-01 * 1/(params['symbolrate']) * (params['txpower'])**2
+
+ #de_dx = (B * 1/x) * (C + D * x) + (A + B * np.log(x)) * D
+
+ return de_dx * 1e-6
+
+class NRF24L01tx:
+ """NRF24L01+ TX energy based on aemr measurements (32B fixed packet size, ack-await, no retries)."""
+ name = 'NRF24L01'
+ parameters = {
+ 'datarate' : [250, 1000, 2000], # kbps
+ 'txbytes' : [],
+ 'txpower' : [-18, -12, -6, 0], # dBm
+ 'voltage' : [1.9, 3.6],
+ }
+ default_params = {
+ 'datarate' : 1000,
+ 'txpower' : -6,
+ 'voltage' : 3,
+ }
+
+ def get_energy(params):
+ if type(params) != dict:
+ return NRF24L01tx.get_energy(_param_list_to_dict(NRF24L01tx, params))
+
+ power = 6.30323056e+03
+ power += 2.59889924e+06 * 1/params['datarate']
+ power += 7.82186268e+00 * (19.47+params['txpower'])**2
+ power += 8.69746093e+03 * 1/params['datarate'] * (19.47+params['txpower'])**2
+
+ duration = 1624.06589147
+ duration += 332251.93798766 * 1/params['datarate']
+
+ energy = power * 1e-6 * duration * 1e-6 * np.ceil(params['txbytes'] / 32)
+
+ return energy
+
class NRF24L01dtx:
"""nRF24L01+ TX energy based on datasheet values (probably unerestimated)"""
name = 'NRF24L01'
parameters = {
- 'symbolrate' : [250, 1000, 2000], # kbps
+ 'datarate' : [250, 1000, 2000], # kbps
'txbytes' : [],
'txpower' : [-18, -12, -6, 0], # dBm
'voltage' : [1.9, 3.6],
}
default_params = {
- 'symbolrate' : 1000,
+ 'datarate' : 1000,
'txpower' : -6,
'voltage' : 3,
}
@@ -89,6 +166,6 @@ class NRF24L01dtx:
elif params['txpower'] == 0:
current = 11.3e-3
- energy += current * params['voltage'] * ((header_bytes + params['txbytes']) * 8 / (params['symbolrate'] * 1e3))
+ energy += current * params['voltage'] * ((header_bytes + params['txbytes']) * 8 / (params['datarate'] * 1e3))
return energy