diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2019-05-22 16:49:27 +0200 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2019-05-22 16:49:49 +0200 |
commit | dc5a3c90ff5efc63959f7bfd5d68e5dcda1ad477 (patch) | |
tree | c386360b7705272da865304efe66c3ba585db639 /lib | |
parent | 6b1a22278f7e8a649c8162de98e352e3f10943ad (diff) |
cycles/radio to energy: Add esp8266
Diffstat (limited to 'lib')
-rw-r--r-- | lib/cycles_to_energy.py | 39 | ||||
-rw-r--r-- | lib/size_to_radio_energy.py | 63 |
2 files changed, 98 insertions, 4 deletions
diff --git a/lib/cycles_to_energy.py b/lib/cycles_to_energy.py index 18b0629..35f9199 100644 --- a/lib/cycles_to_energy.py +++ b/lib/cycles_to_energy.py @@ -15,6 +15,8 @@ def get_class(cpu_name): return ATMega328 if cpu_name == 'ATTiny88': return ATTiny88 + if cpu_name == 'esp8266': + return ESP8266 def _param_list_to_dict(device, param_list): param_dict = dict() @@ -60,7 +62,7 @@ class MSP430: def get_energy_per_cycle(params): if type(params) != dict: - return MSP430.get_energy(_param_list_to_dict(MSP430, params)) + return MSP430.get_energy_per_cycle(_param_list_to_dict(MSP430, params)) return MSP430.get_power(params) / params['cpu_freq'] @@ -94,7 +96,7 @@ class ATMega168: def get_energy_per_cycle(params): if type(params) != dict: - return ATMega168.get_energy(_param_list_to_dict(ATMega168, params)) + return ATMega168.get_energy_per_cycle(_param_list_to_dict(ATMega168, params)) return ATMega168.get_power(params) / params['cpu_freq'] @@ -132,10 +134,41 @@ class ATMega328: def get_energy_per_cycle(params): if type(params) != dict: - return ATMega328.get_energy(_param_list_to_dict(ATMega328, params)) + return ATMega328.get_energy_per_cycle(_param_list_to_dict(ATMega328, params)) return ATMega328.get_power(params) / params['cpu_freq'] +class ESP8266: + # Source: ESP8266EX Datasheet, table 5-2 (v2017.11) / table 3-4 (v2018.11) + # Taken at 3.0V + name = 'ESP8266' + parameters = { + 'cpu_freq': [80e6], + 'voltage': [2.5, 3.0, 3.3, 3.6] # min / ... / typ / max + } + default_params = { + 'cpu_freq': 80e6, + 'voltage': 3.0 + } + + def get_current(params): + if type(params) != dict: + return ESP8266.get_current(_param_list_to_dict(ESP8266, params)) + + return 15e-3 + + def get_power(params): + if type(params) != dict: + return ESP8266.get_power(_param_list_to_dict(ESP8266, params)) + + return ESP8266.get_current(params) * params['voltage'] + + def get_energy_per_cycle(params): + if type(params) != dict: + return ESP8266.get_energy_per_cycle(_param_list_to_dict(ESP8266, params)) + + return ESP8266.get_power(params) / params['cpu_freq'] + class ATTiny88: name = 'ATTiny88' parameters = { diff --git a/lib/size_to_radio_energy.py b/lib/size_to_radio_energy.py index 808ff9b..83b2116 100644 --- a/lib/size_to_radio_energy.py +++ b/lib/size_to_radio_energy.py @@ -15,6 +15,8 @@ def get_class(radio_name: str): return NRF24L01tx if radio_name == 'NRF24L01dtx': return NRF24L01dtx + if radio_name == 'esp8266dtx': + return ESP8266dtx def _param_list_to_dict(device, param_list): param_dict = dict() @@ -40,6 +42,7 @@ class CC1200tx: return CC1200tx.get_energy(_param_list_to_dict(CC1200tx, params)) # Mittlere TX-Leistung, gefitted von AEMR + # Messdaten erhoben bei 3.6V power = 8.18053941e+04 power -= 1.24208376e+03 * np.sqrt(params['symbolrate']) power -= 5.73742779e+02 * np.log(params['txbytes']) @@ -57,6 +60,7 @@ class CC1200tx: # TX-Energie, gefitted von AEMR # Achtung: Energy ist in µJ, nicht (wie in AEMR-Transitionsmodellen üblich) in pJ + # Messdaten erhoben bei 3.6V energy = 1.74383259e+01 energy += 6.29922138e+03 * 1/(params['symbolrate']) @@ -98,8 +102,9 @@ class CC1200tx: return de_dx * 1e-6 +# PYTHONPATH=lib bin/analyze-archive.py --show-model=all --show-quality=table ../data/*_RF24_no_retries.tar class NRF24L01tx: - """NRF24L01+ TX energy based on aemr measurements (32B fixed packet size, ack-await, no retries).""" + """NRF24L01+ TX(*) energy based on aemr measurements (32B fixed packet size, (*)ack-await, no retries).""" name = 'NRF24L01' parameters = { 'datarate' : [250, 1000, 2000], # kbps @@ -113,22 +118,51 @@ class NRF24L01tx: 'voltage' : 3, } +# AEMR: +# TX power / energy: +#TX : 0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * (19.47+parameter(txpower))**2 + regression_arg(3) * 1/(parameter(datarate)) * (19.47+parameter(txpower))**2 +# [6.30323056e+03 2.59889924e+06 7.82186268e+00 8.69746093e+03] +#TX : 0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * (19.47+parameter(txpower))**2 + regression_arg(3) * 1/(parameter(datarate)) * (19.47+parameter(txpower))**2 +# [7.67932887e+00 1.02969455e+04 4.55116475e-03 2.99786534e+01] +#epilogue : timeout : 0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) +# [ 1624.06589147 332251.93798766] + + + def get_energy(params): if type(params) != dict: return NRF24L01tx.get_energy(_param_list_to_dict(NRF24L01tx, params)) + # TX-Leistung, gefitted von AEMR + # Messdaten erhoben bei 3.6V power = 6.30323056e+03 power += 2.59889924e+06 * 1/params['datarate'] power += 7.82186268e+00 * (19.47+params['txpower'])**2 power += 8.69746093e+03 * 1/params['datarate'] * (19.47+params['txpower'])**2 + # TX-Dauer, gefitted von AEMR duration = 1624.06589147 duration += 332251.93798766 * 1/params['datarate'] + # TX-Energie, gefitted von AEMR + # Achtung: Energy ist in µJ, nicht (wie in AEMR-Transitionsmodellen üblich) in pJ + # Messdaten erhoben bei 3.6V + energy = 7.67932887e+00 + energy += 1.02969455e+04 * 1/params['datarate'] + energy += 4.55116475e-03 * (19.47+params['txpower'])**2 + energy += 2.99786534e+01 * 1/params['datarate'] * (19.47+params['txpower'])**2 + energy = power * 1e-6 * duration * 1e-6 * np.ceil(params['txbytes'] / 32) return energy + def get_energy_per_byte(params): + if type(params) != dict: + return NRF24L01tx.get_energy_per_byte(_param_list_to_dict(NRF24L01tx, params)) + + # in µJ + de_dx = 0 + class NRF24L01dtx: """nRF24L01+ TX energy based on datasheet values (probably unerestimated)""" @@ -169,3 +203,30 @@ class NRF24L01dtx: energy += current * params['voltage'] * ((header_bytes + params['txbytes']) * 8 / (params['datarate'] * 1e3)) return energy + +class ESP8266dtx: + """esp8266 TX energy based on (hardly documented) datasheet values)""" + name = 'esp8266' + parameters = { + 'voltage' : [2.5, 3.0, 3.3, 3.6], + 'txbytes' : [], + 'bitrate' : [65e6], + 'tx_current' : [120e-3], + } + default_params = { + 'voltage' : 3, + 'bitrate' : 65e6, + 'tx_current' : 120e-3 + } + + def get_energy(params): + # TODO + return 0 + + def get_energy_per_byte(params): + if type(params) != dict: + return ESP8266dtx.get_energy_per_byte(_param_list_to_dict(ESP8266dtx, params)) + + # TX in 802.11n MCS7 -> 64QAM, 65/72.2 Mbit/s @ 20MHz channel, 135/150 Mbit/s @ 40MHz + # -> Value for 65 Mbit/s @ 20MHz channel + return params['tx_current'] * params['voltage'] / params['bitrate'] |