summaryrefslogtreecommitdiff
path: root/test/test_parameters.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-07-03 11:47:51 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-07-03 11:47:51 +0200
commit2b9aa06f7ca63eb58a4fe9abde9880fada1773e0 (patch)
treed4d387ba29796df3340e8c1904d43d1ef7eb00cb /test/test_parameters.py
parentb911860adb05e9712d16d335c9d1d9785733eea0 (diff)
test_parameters: Test function generation
Diffstat (limited to 'test/test_parameters.py')
-rwxr-xr-xtest/test_parameters.py46
1 files changed, 44 insertions, 2 deletions
diff --git a/test/test_parameters.py b/test/test_parameters.py
index 57ab166..5d7ec84 100755
--- a/test/test_parameters.py
+++ b/test/test_parameters.py
@@ -3,6 +3,7 @@
from dfatool import dfatool as dt
from dfatool import parameters
from dfatool.utils import by_name_to_by_param
+from dfatool.functions import analytic
import unittest
import numpy as np
@@ -24,9 +25,16 @@ class TestModels(unittest.TestCase):
)
def test_parameter_detection_linear(self):
- rng = np.random.default_rng()
+ rng = np.random.default_rng(seed=1312)
X = np.arange(200) % 50
Y = X + rng.normal(size=X.size)
+ parameter_names = ["p_mod5", "p_linear"]
+
+ # Test input data:
+ # * param[0] ("p_mod5") == X % 5 (bogus data to test detection of non-influence)
+ # * param[1] ("p_linear") == X
+ # * TX power == X ± gaussian noise
+ # -> TX power depends linearly on "p_linear"
by_name = {
"TX": {
"param": [(x % 5, x) for x in X],
@@ -35,17 +43,51 @@ class TestModels(unittest.TestCase):
}
}
by_param = by_name_to_by_param(by_name)
- stats = parameters.ParamStats(by_name, by_param, ["p_mod5", "p_linear"], dict())
+ stats = parameters.ParamStats(by_name, by_param, parameter_names, dict())
self.assertEqual(stats.depends_on_param("TX", "power", "p_mod5"), False)
self.assertEqual(stats.depends_on_param("TX", "power", "p_linear"), True)
+ # Fit individual functions for each parameter (only "p_linear" in this case)
+
paramfit = dt.ParallelParamFit(by_param)
paramfit.enqueue("TX", "power", 1, "p_linear")
paramfit.fit()
fit_result = paramfit.get_result("TX", "power")
self.assertEqual(fit_result["p_linear"]["best"], "linear")
+ self.assertEqual("p_mod5" not in fit_result, True)
+
+ # Fit a single function for all parameters (still only "p_linear" in this case)
+
+ combined_fit = analytic.function_powerset(fit_result, parameter_names, 0)
+
+ self.assertEqual(
+ combined_fit._model_str,
+ "0 + regression_arg(0) + regression_arg(1) * parameter(p_linear)",
+ )
+ self.assertEqual(
+ combined_fit._function_str,
+ "0 + reg_param[0] + reg_param[1] * model_param[1]",
+ )
+
+ combined_fit.fit(by_param, "TX", "power")
+
+ self.assertEqual(combined_fit.fit_success, True)
+
+ self.assertEqual(combined_fit.is_predictable([None, None]), False)
+ self.assertEqual(combined_fit.is_predictable([None, 0]), True)
+ self.assertEqual(combined_fit.is_predictable([None, 50]), True)
+ self.assertEqual(combined_fit.is_predictable([0, None]), False)
+ self.assertEqual(combined_fit.is_predictable([50, None]), False)
+ self.assertEqual(combined_fit.is_predictable([0, 0]), True)
+ self.assertEqual(combined_fit.is_predictable([0, 50]), True)
+ self.assertEqual(combined_fit.is_predictable([50, 0]), True)
+ self.assertEqual(combined_fit.is_predictable([50, 50]), True)
+
+ # The function should be linear without offset or skew
+ for i in range(100):
+ self.assertAlmostEqual(combined_fit.eval([None, i]), i, places=0)
if __name__ == "__main__":