summaryrefslogtreecommitdiff
path: root/test/test_ptamodel.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-07-15 11:25:49 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-07-15 11:25:49 +0200
commit3061bf6dab2aed9746a43f3c838bea31c6c1a270 (patch)
tree923f1732853fc0e6cd2620b6cdd95d2b45872c55 /test/test_ptamodel.py
parent024e05ed88cf262e4960746aedaaa83aca472769 (diff)
Add PTAModel validation and crossvalidation test
Diffstat (limited to 'test/test_ptamodel.py')
-rwxr-xr-xtest/test_ptamodel.py465
1 files changed, 458 insertions, 7 deletions
diff --git a/test/test_ptamodel.py b/test/test_ptamodel.py
index 94ee842..e8905b1 100755
--- a/test/test_ptamodel.py
+++ b/test/test_ptamodel.py
@@ -2,13 +2,464 @@
from dfatool.loader import RawData, pta_trace_to_aggregate
from dfatool.model import PTAModel
+from dfatool.utils import by_name_to_by_param
+from dfatool.validation import CrossValidator
import os
import unittest
import pytest
+import numpy as np
-class TestModels(unittest.TestCase):
- def test_model_singlefile_rf24(self):
+
+class TestSynthetic(unittest.TestCase):
+ def test_model_validation(self):
+ # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17
+ np.random.seed(1312)
+ X = np.arange(500) % 50
+ parameter_names = ["p_mod5", "p_linear"]
+
+ s1_duration_base = 70
+ s1_duration_scale = 2
+ s1_power_base = 50
+ s1_power_scale = 7
+ s2_duration_base = 700
+ s2_duration_scale = 1
+ s2_power_base = 1500
+ s2_power_scale = 10
+
+ by_name = {
+ "raw_state_1": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s1_duration_base
+ + np.random.normal(size=X.size, scale=s1_duration_scale),
+ "power": s1_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s1_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ "raw_state_2": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s2_duration_base
+ - 2 * X
+ + np.random.normal(size=X.size, scale=s2_duration_scale),
+ "power": s2_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s2_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ }
+ by_param = by_name_to_by_param(by_name)
+ model = PTAModel(by_name, parameter_names, dict())
+ static_model = model.get_static()
+
+ # x ∈ [0, 50] -> mean(X) is 25
+ self.assertAlmostEqual(
+ static_model("raw_state_1", "duration"), s1_duration_base, places=0
+ )
+ self.assertAlmostEqual(
+ static_model("raw_state_1", "power"), s1_power_base + 25, delta=7
+ )
+ self.assertAlmostEqual(
+ static_model("raw_state_2", "duration"), s2_duration_base - 2 * 25, delta=2
+ )
+ self.assertAlmostEqual(
+ static_model("raw_state_2", "power"), s2_power_base + 25, delta=7
+ )
+
+ param_model, param_info = model.get_fitted()
+
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "duration", param=[0, 10]),
+ s1_duration_base,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "duration", param=[0, 50]),
+ s1_duration_base,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "duration", param=[0, 70]),
+ s1_duration_base,
+ places=0,
+ )
+
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "power", param=[0, 10]),
+ s1_power_base + 10,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "power", param=[0, 50]),
+ s1_power_base + 50,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "power", param=[0, 70]),
+ s1_power_base + 70,
+ places=0,
+ )
+
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "duration", param=[0, 10]),
+ s2_duration_base - 2 * 10,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "duration", param=[0, 50]),
+ s2_duration_base - 2 * 50,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "duration", param=[0, 70]),
+ s2_duration_base - 2 * 70,
+ places=0,
+ )
+
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "power", param=[0, 10]),
+ s2_power_base + 10,
+ delta=50,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "power", param=[0, 50]),
+ s2_power_base + 50,
+ delta=50,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "power", param=[0, 70]),
+ s2_power_base + 70,
+ delta=50,
+ )
+
+ static_quality = model.assess(static_model)
+ param_quality = model.assess(param_model)
+
+ # static quality reflects normal distribution scale for non-parameterized data
+
+ # the Root Mean Square Deviation must not be greater the scale (i.e., standard deviation) of the normal distribution
+ # Low Mean Absolute Error (< 2)
+ self.assertTrue(static_quality["by_name"]["raw_state_1"]["duration"]["mae"] < 2)
+ # Low Root Mean Square Deviation (< scale == 2)
+ self.assertTrue(
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"] < 2
+ )
+ # Relatively low error percentage (~~ MAE * 100% / s1_duration_base)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["duration"]["mape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"]
+ * 100
+ / s1_duration_base,
+ places=1,
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"]
+ * 100
+ / s1_duration_base,
+ places=1,
+ )
+
+ # static error is high for parameterized data
+
+ # MAE == mean(abs(actual value - model value))
+ # parameter range is [0, 50) -> mean 25, deviation range is [0, 25) -> mean deviation is 12.5 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["mae"], 12.5, delta=1
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["rmsd"], 16, delta=2
+ )
+ # high percentage error due to low s1_power_base
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["mape"], 19, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["smape"], 19, delta=2
+ )
+
+ # parameter range is [0, 100) -> mean deviation is 25 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["mae"], 25, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], 30, delta=2
+ )
+
+ # low percentage error due to high s2_duration_base (~~ 3.5 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["mape"],
+ 25 * 100 / s2_duration_base,
+ delta=1,
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 25 * 100 / s2_duration_base,
+ delta=1,
+ )
+
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["mae"], 12.5, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["rmsd"], 17, delta=2
+ )
+
+ # low percentage error due to high s2_power_base (~~ 1.7 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["mape"],
+ 25 * 100 / s2_power_base,
+ delta=1,
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["smape"],
+ 25 * 100 / s2_power_base,
+ delta=1,
+ )
+
+ # raw_state_1/duration does not depend on parameters and delegates to the static model
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["mape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mape"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ )
+
+ # fitted param-model quality reflects normal distribution scale for all data
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["mape"], 0.9, places=1
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["mae"] < s1_power_scale
+ )
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["rmsd"] < s1_power_scale
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["power"]["mape"], 7.5, delta=1
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["power"]["smape"], 7.5, delta=1
+ )
+
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["mae"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["rmsd"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["mape"],
+ 0.12,
+ delta=0.01,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 0.12,
+ delta=0.01,
+ )
+
+ # ... unless the signal-to-noise ratio (parameter range = [0 .. 50] vs. scale = 10) is bad, leading to
+ # increased regression errors
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["mae"] < 15)
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["rmsd"] < 18)
+
+ # still: low percentage error due to high s2_power_base
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["mape"], 0.9, places=1
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+ def test_model_crossvalidation_10fold(self):
+ # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17
+ np.random.seed(1312)
+ X = np.arange(500) % 50
+ parameter_names = ["p_mod5", "p_linear"]
+
+ s1_duration_base = 70
+ s1_duration_scale = 2
+ s1_power_base = 50
+ s1_power_scale = 7
+ s2_duration_base = 700
+ s2_duration_scale = 1
+ s2_power_base = 1500
+ s2_power_scale = 10
+
+ by_name = {
+ "raw_state_1": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s1_duration_base
+ + np.random.normal(size=X.size, scale=s1_duration_scale),
+ "power": s1_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s1_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ "raw_state_2": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s2_duration_base
+ - 2 * X
+ + np.random.normal(size=X.size, scale=s2_duration_scale),
+ "power": s2_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s2_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ }
+ by_param = by_name_to_by_param(by_name)
+ arg_count = dict()
+ model = PTAModel(by_name, parameter_names, arg_count)
+ validator = CrossValidator(PTAModel, by_name, parameter_names, arg_count)
+
+ static_quality = validator.kfold(lambda m: m.get_static(), 10)
+ param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10)
+
+ print(static_quality)
+
+ # static quality reflects normal distribution scale for non-parameterized data
+
+ # the Root Mean Square Deviation must not be greater the scale (i.e., standard deviation) of the normal distribution
+ # Low Mean Absolute Error (< 2)
+ self.assertTrue(static_quality["by_name"]["raw_state_1"]["duration"]["mae"] < 2)
+ # Low Root Mean Square Deviation (< scale == 2)
+ self.assertTrue(
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"] < 2
+ )
+ # Relatively low error percentage (~~ MAE * 100% / s1_duration_base)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"]
+ * 100
+ / s1_duration_base,
+ places=1,
+ )
+
+ # static error is high for parameterized data
+
+ # MAE == mean(abs(actual value - model value))
+ # parameter range is [0, 50) -> mean 25, deviation range is [0, 25) -> mean deviation is 12.5 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["mae"], 12.5, delta=1
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["rmsd"], 16, delta=2
+ )
+ # high percentage error due to low s1_power_base
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["smape"], 19, delta=2
+ )
+
+ # parameter range is [0, 100) -> mean deviation is 25 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["mae"], 25, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], 30, delta=2
+ )
+
+ # low percentage error due to high s2_duration_base (~~ 3.5 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 25 * 100 / s2_duration_base,
+ delta=1,
+ )
+
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["mae"], 12.5, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["rmsd"], 17, delta=2
+ )
+
+ # low percentage error due to high s2_power_base (~~ 1.7 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["smape"],
+ 25 * 100 / s2_power_base,
+ delta=1,
+ )
+
+ # raw_state_1/duration does not depend on parameters and delegates to the static model
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ )
+
+ # fitted param-model quality reflects normal distribution scale for all data
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["mae"] < s1_power_scale
+ )
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["rmsd"] < s1_power_scale
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["power"]["smape"], 7.5, delta=1
+ )
+
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["mae"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["rmsd"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 0.12,
+ delta=0.01,
+ )
+
+ # ... unless the signal-to-noise ratio (parameter range = [0 .. 50] vs. scale = 10) is bad, leading to
+ # increased regression errors
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["mae"] < 15)
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["rmsd"] < 18)
+
+ # still: low percentage error due to high s2_power_base
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+
+class TestFromFile(unittest.TestCase):
+ def test_singlefile_rf24(self):
raw_data = RawData(["test-data/20170220_164723_RF24_int_A.tar"])
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
@@ -162,7 +613,7 @@ class TestModels(unittest.TestCase):
param_model("RX", "power", param=[1, None, None]), 48647, places=-1
)
- def test_model_singlefile_mmparam(self):
+ def test_singlefile_mmparam(self):
raw_data = RawData(["test-data/20161221_123347_mmparam.tar"])
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
@@ -201,7 +652,7 @@ class TestModels(unittest.TestCase):
param_lut_model("ON", "power", param=[None, None]), 17866, places=0
)
- def test_model_multifile_lm75x(self):
+ def test_multifile_lm75x(self):
testfiles = [
"test-data/20170116_124500_LM75x.tar",
"test-data/20170116_131306_LM75x.tar",
@@ -243,7 +694,7 @@ class TestModels(unittest.TestCase):
self.assertAlmostEqual(static_model("shutdown", "duration"), 6980, places=0)
self.assertAlmostEqual(static_model("start", "duration"), 6980, places=0)
- def test_model_multifile_sharp(self):
+ def test_multifile_sharp(self):
testfiles = [
"test-data/20170116_145420_sharpLS013B4DN.tar",
"test-data/20170116_151348_sharpLS013B4DN.tar",
@@ -285,7 +736,7 @@ class TestModels(unittest.TestCase):
self.assertAlmostEqual(static_model("sendLine", "duration"), 180, places=0)
self.assertAlmostEqual(static_model("toggleVCOM", "duration"), 30, places=0)
- def test_model_multifile_mmstatic(self):
+ def test_multifile_mmstatic(self):
testfiles = [
"test-data/20170116_143516_mmstatic.tar",
"test-data/20170116_142654_mmstatic.tar",
@@ -325,7 +776,7 @@ class TestModels(unittest.TestCase):
@pytest.mark.skipif(
"TEST_SLOW" not in os.environ, reason="slow test, set TEST_SLOW=1 to run"
)
- def test_model_multifile_cc1200(self):
+ def test_multifile_cc1200(self):
testfiles = [
"test-data/20170125_125433_cc1200.tar",
"test-data/20170125_142420_cc1200.tar",