summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/functions.py36
1 files changed, 17 insertions, 19 deletions
diff --git a/lib/functions.py b/lib/functions.py
index c30a5f7..98b6317 100644
--- a/lib/functions.py
+++ b/lib/functions.py
@@ -39,18 +39,17 @@ class ParamFunction:
(-> single float as model input) are used. However, n-dimensional
functions (-> list of float as model input) are also supported.
- arguments:
- param_function -- regression function. Must have the signature
- (reg_param, model_param) -> float.
- reg_param is a list of regression variable values,
- model_param is the model input value (float).
- Example: lambda rp, mp: rp[0] + rp[1] * mp
- validation_function -- function used to check whether param_function
- is defined for a given model_param. Signature:
- model_param -> bool
- Example: lambda mp: mp > 0
- num_vars -- How many regression variables are used by this function,
- i.e., the length of param_function's reg_param argument.
+ :param param_function: regression function. Must have the signature
+ (reg_param, model_param) -> float.
+ reg_param is a list of regression variable values,
+ model_param is the model input value (float).
+ Example: lambda rp, mp: rp[0] + rp[1] * mp
+ :param validation_function: function used to check whether param_function
+ is defined for a given model_param. Signature:
+ model_param -> bool
+ Example: lambda mp: mp > 0
+ :param num_vars: How many regression variables are used by this function,
+ i.e., the length of param_function's reg_param argument.
"""
self._param_function = param_function
self._validation_function = validation_function
@@ -270,9 +269,9 @@ class AnalyticFunction:
Evaluate model function with specified param/arg values.
arguments:
- param_list -- parameter values (list of float). First item
+ :param param_list: parameter values (list of float). First item
corresponds to lexically first parameter, etc.
- arg_list -- argument values (list of float), if arguments are used.
+ :param arg_list: argument values (list of float), if arguments are used.
"""
if len(self._regression_args) == 0:
return self._function(param_list, arg_list)
@@ -315,15 +314,14 @@ class analytic:
"""
Retrieve pre-defined set of regression function candidates.
+ :param safe_functions_enabled: Include "safe" variants of functions with
+ limited argument range, e.g. a safe
+ inverse which returns 1 when dividing by 0.
+
Returns a dict of functions which are typical for energy/timing
behaviour of embedded hardware, e.g. linear, exponential or inverse
dependency on a configuration setting/runtime variable.
- arguments:
- safe_functions_enabled -- Include "safe" variants of functions with
- limited argument range, e.g. a safe
- inverse which returns 1 when dividing by 0.
-
Each function is a ParamFunction object. In most cases, two regression
variables are expected.
"""