summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xbin/merge.py86
-rw-r--r--lib/Kratos/DFADriver.pm58
2 files changed, 120 insertions, 24 deletions
diff --git a/bin/merge.py b/bin/merge.py
index cc287e8..b5e7f8f 100755
--- a/bin/merge.py
+++ b/bin/merge.py
@@ -75,6 +75,9 @@ def str_to_param_function(function_string, parameters, variables):
if rawfunction.find("global(%s)" % (parameters[i])) >= 0:
dependson[i] = True
rawfunction = rawfunction.replace("global(%s)" % (parameters[i]), "arg[%d]" % (i))
+ if rawfunction.find("local(%s)" % (parameters[i])) >= 0:
+ dependson[i] = True
+ rawfunction = rawfunction.replace("local(%s)" % (parameters[i]), "arg[%d]" % (i))
for i in range(len(variables)):
rawfunction = rawfunction.replace("param(%d)" % (i), "param[%d]" % (i))
fitfunc = eval("lambda param, arg: " + rawfunction);
@@ -142,9 +145,9 @@ def try_fits(name, datatype, paramidx, paramdata):
'square' : lambda param, arg: param[0] + param[1] * arg ** 2,
'fractional' : lambda param, arg: param[0] + param[1] / arg,
'sqrt' : lambda param, arg: param[0] + param[1] * np.sqrt(arg),
- #'num0_8' : lambda param, arg: param[0] + param[1] * num0_8(arg),
- #'num0_16' : lambda param, arg: param[0] + param[1] * num0_16(arg),
- #'num1' : lambda param, arg: param[0] + param[1] * num1(arg),
+ 'num0_8' : lambda param, arg: param[0] + param[1] * num0_8(arg),
+ 'num0_16' : lambda param, arg: param[0] + param[1] * num0_16(arg),
+ 'num1' : lambda param, arg: param[0] + param[1] * num1(arg),
}
results = dict([[key, []] for key in functions.keys()])
errors = {}
@@ -443,27 +446,27 @@ def load_run_elem(index, element, trace, by_name, by_arg, by_param, by_trace):
add_data_to_aggregate(by_param, param_key, element['isa'], elem_data)
add_data_to_aggregate(by_trace, trace_key, element['isa'], elem_data)
-def fmap(name, funtype):
+def fmap(reftype, name, funtype):
if funtype == 'linear':
- return "global(%s)" % name
+ return "%s(%s)" % (reftype, name)
if funtype == 'logarithmic':
- return "np.log(global(%s))" % name
+ return "np.log(%s(%s))" % (reftype, name)
if funtype == 'logarithmic1':
- return "np.log(global(%s) + 1)" % name
+ return "np.log(%s(%s) + 1)" % (reftype, name)
if funtype == 'exponential':
- return "np.exp(global(%s))" % name
+ return "np.exp(%s(%s))" % (reftype, name)
if funtype == 'square':
- return "global(%s)**2" % name
+ return "%s(%s)**2" % (reftype, name)
if funtype == 'fractional':
- return "1 / global(%s)" % name
+ return "1 / %s(%s)" % (reftype, name)
if funtype == 'sqrt':
- return "np.sqrt(global(%s))" % name
+ return "np.sqrt(%s(%s))" % (reftype, name)
if funtype == 'num0_8':
- return "num0_8(global(%s))" % name
+ return "num0_8(%s(%s))" % (reftype, name)
if funtype == 'num0_16':
- return "num0_16(global(%s))" % name
+ return "num0_16(%s(%s))" % (reftype, name)
if funtype == 'num1':
- return "num1(global(%s))" % name
+ return "num1(%s(%s))" % (reftype, name)
return "ERROR"
def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis):
@@ -483,7 +486,7 @@ def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis):
buf += " + param(%d)" % pidx
pidx += 1
for fun in elem:
- buf += " * %s" % fmap(*fun)
+ buf += " * %s" % fmap('global', *fun)
aggdata['function']['estimate'] = {
'raw' : buf,
'params' : list(np.ones((pidx))),
@@ -493,6 +496,33 @@ def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis):
aggdata['function']['estimate'], name, datatype, parameters,
paramdata, yaxis=yaxis)
+def arg_fguess_to_function(name, datatype, aggdata, arguments, argdata, yaxis):
+ best_fit = {}
+ fitguess = aggdata['arg_fit_guess']
+ args = list(filter(lambda x : x in fitguess, arguments))
+ if len(args) > 0:
+ for arg in args:
+ best_fit_val = np.inf
+ for func_name, fit_val in fitguess[arg].items():
+ if fit_val['rmsd'] < best_fit_val:
+ best_fit_val = fit_val['rmsd']
+ best_fit[arg] = func_name
+ buf = '0'
+ pidx = 0
+ for elem in powerset(best_fit.items()):
+ buf += " + param(%d)" % pidx
+ pidx += 1
+ for fun in elem:
+ buf += " * %s" % fmap('local', *fun)
+ aggdata['arg_function']['estimate'] = {
+ 'raw' : buf,
+ 'params' : list(np.ones((pidx))),
+ 'base' : [best_fit[arg] for arg in args]
+ }
+ fit_function(
+ aggdata['arg_function']['estimate'], name, datatype, arguments,
+ argdata, yaxis=yaxis)
+
def param_measures(name, paramdata, key, fun):
mae = []
smape = []
@@ -539,6 +569,8 @@ def keydata(name, val, argdata, paramdata, tracedata, key):
ret['arg_median_goodness'] = arg_measures(name, argdata, key, np.median)
ret['std_arg'] = np.mean([np.std(argdata[x][key]) for x in argdata.keys() if x[0] == name])
ret['std_by_arg'] = {}
+ ret['arg_fit_guess'] = {}
+ ret['arg_function'] = {}
return ret
@@ -898,7 +930,7 @@ def analyze_by_arg(aggval, by_arg, allvalues, name, key1, key2, arg_name, arg_id
aggval[key1]['std_by_arg'][arg_name] = mean_std_by_arg(
by_arg, allvalues, name, key2, arg_idx)
if aggval[key1]['std_by_arg'][arg_name] > 0 and aggval[key1]['std_arg'] / aggval[key1]['std_by_arg'][arg_name] < 0.6:
- pass # TODO
+ aggval[key1]['arg_fit_guess'][arg_name] = try_fits(name, key2, arg_idx, by_arg)
def maybe_fit_function(aggval, model, by_param, parameters, name, key1, key2, unit):
if 'function' in model[key1] and 'user' in model[key1]['function']:
@@ -955,11 +987,6 @@ def analyze(by_name, by_arg, by_param, by_trace, parameters):
analyze_by_param(aggval, by_param, allvalues, name, 'rel_energy_next', 'rel_energies_next', param, i)
if isa == 'transition' and 'function' in data['model']['transition'][name]['timeout']:
analyze_by_param(aggval, by_param, allvalues, name, 'timeout', 'timeouts', param, i)
- if 'parameters' in model:
- for i, arg in enumerate(model['parameters']):
- values = list(set([key[1][i] for key in by_arg.keys() if key[0] == name and is_numeric(key[1][i])]))
- allvalues = [(*key[1][:i], *key[1][i+1:]) for key in by_arg.keys() if key[0] == name]
- analyze_by_arg(aggval, by_arg, allvalues, name, 'power', 'means', arg['name'], i)
if isa == 'state':
fguess_to_function(name, 'means', aggval['power'], parameters, by_param,
@@ -988,6 +1015,23 @@ def analyze(by_name, by_arg, by_param, by_trace, parameters):
if aggval['timeout']['std_param'] > 0 and aggval['timeout']['std_trace'] / aggval['timeout']['std_param'] < 0.5:
aggval['timeout']['std_by_trace'] = mean_std_by_trace_part(by_trace, transition_names, name, 'timeouts')
+ for i, arg in enumerate(model['parameters']):
+ values = list(set([key[1][i] for key in by_arg.keys() if key[0] == name and is_numeric(key[1][i])]))
+ allvalues = [(*key[1][:i], *key[1][i+1:]) for key in by_arg.keys() if key[0] == name]
+ analyze_by_arg(aggval, by_arg, allvalues, name, 'duration', 'durations', arg['name'], i)
+ analyze_by_arg(aggval, by_arg, allvalues, name, 'energy', 'energies', arg['name'], i)
+ analyze_by_arg(aggval, by_arg, allvalues, name, 'rel_energy_prev', 'rel_energies_prev', arg['name'], i)
+ analyze_by_arg(aggval, by_arg, allvalues, name, 'rel_energy_next', 'rel_energies_next', arg['name'], i)
+ arguments = list(map(lambda x: x['name'], model['parameters']))
+ arg_fguess_to_function(name, 'durations', aggval['duration'], arguments, by_arg,
+ 'estimated %s duration [µs]' % name)
+ arg_fguess_to_function(name, 'energies', aggval['energy'], arguments, by_arg,
+ 'estimated %s energy [pJ]' % name)
+ arg_fguess_to_function(name, 'rel_energies_prev', aggval['rel_energy_prev'], arguments, by_arg,
+ 'estimated relative %s energy [pJ]' % name)
+ arg_fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], arguments, by_arg,
+ 'estimated relative %s energy [pJ]' % name)
+
return aggdata
try:
diff --git a/lib/Kratos/DFADriver.pm b/lib/Kratos/DFADriver.pm
index b894248..b393415 100644
--- a/lib/Kratos/DFADriver.pm
+++ b/lib/Kratos/DFADriver.pm
@@ -139,8 +139,11 @@ sub log {
}
sub assess_fits {
- my ( $self, $hash, $param ) = @_;
- my $errmap = $hash->{fit_guess}{$param};
+ my ( $self, $hash, $param, $funtype ) = @_;
+
+ $funtype //= 'fit_guess';
+
+ my $errmap = $hash->{$funtype}{$param};
my @errors = map { [ $_, $errmap->{$_} ] } keys %{$errmap};
@errors = sort { $a->[1]{rmsd} <=> $b->[1]{rmsd} } @errors;
@@ -320,6 +323,7 @@ sub printf_parameterized {
my $std_ind_arg = $hash->{std_arg};
my $std_ind_param = $hash->{std_param};
my $std_ind_trace = $hash->{std_trace};
+ my $std_by_arg = $hash->{std_by_arg} // {};
my $std_by_param = $hash->{std_by_param};
my $std_by_trace = $hash->{std_by_trace} // {};
my $arg_ratio;
@@ -400,12 +404,32 @@ sub printf_parameterized {
$status = 'depends';
}
if ($fline) {
- printf( " %s: %s on %s (%.2f / %.2f = %.3f%s)\n",
+ printf( " %s: %s on global %s (%.2f / %.2f = %.3f%s)\n",
$key, $status, $param, $std_ind_param, $std_this, $ratio,
$fline );
}
}
+ for my $arg ( sort keys %{$std_by_arg} ) {
+ my $std_this = $std_by_arg->{$arg};
+ my $ratio = $std_ind_arg / $std_this;
+ my $status = 'does not depend';
+ my $fline = q{};
+ if ( $ratio < 0.6 ) {
+ $status = 'might depend';
+ $fline = q{, probably };
+ $fline .= join( ' or ', $self->assess_fits( $hash, $arg, 'arg_fit_guess' ) );
+ }
+ if ( $ratio < 0.3 ) {
+ $status = 'depends';
+ }
+ if ($fline) {
+ printf( " %s: %s on local %s (%.2f / %.2f = %.3f%s)\n",
+ $key, $status, $arg, $std_ind_arg, $std_this, $ratio,
+ $fline );
+ }
+ }
+
for my $transition ( sort keys %{$std_by_trace} ) {
my $std_this = $std_by_trace->{$transition};
my $ratio = $std_ind_trace / $std_this;
@@ -467,6 +491,34 @@ sub printf_fit {
$hash->{param_mean_goodness}{rmsd}
);
}
+ if ( exists $hash->{arg_function}{user} ) {
+ if ( exists $hash->{arg_function}{user}{error} ) {
+ printf( " user-specifed %s argfunction could not be fitted: %s\n",
+ $key, $hash->{arg_function}{user}{error} );
+ }
+ else {
+ printf(
+ " user-specifed %s argfunction fit error: %.2f%% / %.f %s\n",
+ $key,
+ $hash->{arg_function}{user}{fit}{smape} // -1,
+ $hash->{arg_function}{user}{fit}{mae}, $unit
+ );
+ }
+ }
+ if ( exists $hash->{arg_function}{estimate} ) {
+ if ( exists $hash->{arg_function}{estimate}{error} ) {
+ printf( " estimated %s argfunction could not be fitted: %s\n",
+ $key, $hash->{arg_function}{estimate}{error} );
+ }
+ else {
+ printf(
+ " estimated %s argfunction fit error: %.2f%% / %.f %s\n",
+ $key,
+ $hash->{arg_function}{estimate}{fit}{smape} // -1,
+ $hash->{arg_function}{estimate}{fit}{mae}, $unit
+ );
+ }
+ }
if ( exists $hash->{arg_mean_goodness} ) {
printf(
" %s: arg mean/ssr-fit LUT error: %.2f%% / %.f %s / %.f\n",