diff options
-rwxr-xr-x | bin/merge.py | 86 | ||||
-rw-r--r-- | lib/Kratos/DFADriver.pm | 58 |
2 files changed, 120 insertions, 24 deletions
diff --git a/bin/merge.py b/bin/merge.py index cc287e8..b5e7f8f 100755 --- a/bin/merge.py +++ b/bin/merge.py @@ -75,6 +75,9 @@ def str_to_param_function(function_string, parameters, variables): if rawfunction.find("global(%s)" % (parameters[i])) >= 0: dependson[i] = True rawfunction = rawfunction.replace("global(%s)" % (parameters[i]), "arg[%d]" % (i)) + if rawfunction.find("local(%s)" % (parameters[i])) >= 0: + dependson[i] = True + rawfunction = rawfunction.replace("local(%s)" % (parameters[i]), "arg[%d]" % (i)) for i in range(len(variables)): rawfunction = rawfunction.replace("param(%d)" % (i), "param[%d]" % (i)) fitfunc = eval("lambda param, arg: " + rawfunction); @@ -142,9 +145,9 @@ def try_fits(name, datatype, paramidx, paramdata): 'square' : lambda param, arg: param[0] + param[1] * arg ** 2, 'fractional' : lambda param, arg: param[0] + param[1] / arg, 'sqrt' : lambda param, arg: param[0] + param[1] * np.sqrt(arg), - #'num0_8' : lambda param, arg: param[0] + param[1] * num0_8(arg), - #'num0_16' : lambda param, arg: param[0] + param[1] * num0_16(arg), - #'num1' : lambda param, arg: param[0] + param[1] * num1(arg), + 'num0_8' : lambda param, arg: param[0] + param[1] * num0_8(arg), + 'num0_16' : lambda param, arg: param[0] + param[1] * num0_16(arg), + 'num1' : lambda param, arg: param[0] + param[1] * num1(arg), } results = dict([[key, []] for key in functions.keys()]) errors = {} @@ -443,27 +446,27 @@ def load_run_elem(index, element, trace, by_name, by_arg, by_param, by_trace): add_data_to_aggregate(by_param, param_key, element['isa'], elem_data) add_data_to_aggregate(by_trace, trace_key, element['isa'], elem_data) -def fmap(name, funtype): +def fmap(reftype, name, funtype): if funtype == 'linear': - return "global(%s)" % name + return "%s(%s)" % (reftype, name) if funtype == 'logarithmic': - return "np.log(global(%s))" % name + return "np.log(%s(%s))" % (reftype, name) if funtype == 'logarithmic1': - return "np.log(global(%s) + 1)" % name + return "np.log(%s(%s) + 1)" % (reftype, name) if funtype == 'exponential': - return "np.exp(global(%s))" % name + return "np.exp(%s(%s))" % (reftype, name) if funtype == 'square': - return "global(%s)**2" % name + return "%s(%s)**2" % (reftype, name) if funtype == 'fractional': - return "1 / global(%s)" % name + return "1 / %s(%s)" % (reftype, name) if funtype == 'sqrt': - return "np.sqrt(global(%s))" % name + return "np.sqrt(%s(%s))" % (reftype, name) if funtype == 'num0_8': - return "num0_8(global(%s))" % name + return "num0_8(%s(%s))" % (reftype, name) if funtype == 'num0_16': - return "num0_16(global(%s))" % name + return "num0_16(%s(%s))" % (reftype, name) if funtype == 'num1': - return "num1(global(%s))" % name + return "num1(%s(%s))" % (reftype, name) return "ERROR" def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis): @@ -483,7 +486,7 @@ def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis): buf += " + param(%d)" % pidx pidx += 1 for fun in elem: - buf += " * %s" % fmap(*fun) + buf += " * %s" % fmap('global', *fun) aggdata['function']['estimate'] = { 'raw' : buf, 'params' : list(np.ones((pidx))), @@ -493,6 +496,33 @@ def fguess_to_function(name, datatype, aggdata, parameters, paramdata, yaxis): aggdata['function']['estimate'], name, datatype, parameters, paramdata, yaxis=yaxis) +def arg_fguess_to_function(name, datatype, aggdata, arguments, argdata, yaxis): + best_fit = {} + fitguess = aggdata['arg_fit_guess'] + args = list(filter(lambda x : x in fitguess, arguments)) + if len(args) > 0: + for arg in args: + best_fit_val = np.inf + for func_name, fit_val in fitguess[arg].items(): + if fit_val['rmsd'] < best_fit_val: + best_fit_val = fit_val['rmsd'] + best_fit[arg] = func_name + buf = '0' + pidx = 0 + for elem in powerset(best_fit.items()): + buf += " + param(%d)" % pidx + pidx += 1 + for fun in elem: + buf += " * %s" % fmap('local', *fun) + aggdata['arg_function']['estimate'] = { + 'raw' : buf, + 'params' : list(np.ones((pidx))), + 'base' : [best_fit[arg] for arg in args] + } + fit_function( + aggdata['arg_function']['estimate'], name, datatype, arguments, + argdata, yaxis=yaxis) + def param_measures(name, paramdata, key, fun): mae = [] smape = [] @@ -539,6 +569,8 @@ def keydata(name, val, argdata, paramdata, tracedata, key): ret['arg_median_goodness'] = arg_measures(name, argdata, key, np.median) ret['std_arg'] = np.mean([np.std(argdata[x][key]) for x in argdata.keys() if x[0] == name]) ret['std_by_arg'] = {} + ret['arg_fit_guess'] = {} + ret['arg_function'] = {} return ret @@ -898,7 +930,7 @@ def analyze_by_arg(aggval, by_arg, allvalues, name, key1, key2, arg_name, arg_id aggval[key1]['std_by_arg'][arg_name] = mean_std_by_arg( by_arg, allvalues, name, key2, arg_idx) if aggval[key1]['std_by_arg'][arg_name] > 0 and aggval[key1]['std_arg'] / aggval[key1]['std_by_arg'][arg_name] < 0.6: - pass # TODO + aggval[key1]['arg_fit_guess'][arg_name] = try_fits(name, key2, arg_idx, by_arg) def maybe_fit_function(aggval, model, by_param, parameters, name, key1, key2, unit): if 'function' in model[key1] and 'user' in model[key1]['function']: @@ -955,11 +987,6 @@ def analyze(by_name, by_arg, by_param, by_trace, parameters): analyze_by_param(aggval, by_param, allvalues, name, 'rel_energy_next', 'rel_energies_next', param, i) if isa == 'transition' and 'function' in data['model']['transition'][name]['timeout']: analyze_by_param(aggval, by_param, allvalues, name, 'timeout', 'timeouts', param, i) - if 'parameters' in model: - for i, arg in enumerate(model['parameters']): - values = list(set([key[1][i] for key in by_arg.keys() if key[0] == name and is_numeric(key[1][i])])) - allvalues = [(*key[1][:i], *key[1][i+1:]) for key in by_arg.keys() if key[0] == name] - analyze_by_arg(aggval, by_arg, allvalues, name, 'power', 'means', arg['name'], i) if isa == 'state': fguess_to_function(name, 'means', aggval['power'], parameters, by_param, @@ -988,6 +1015,23 @@ def analyze(by_name, by_arg, by_param, by_trace, parameters): if aggval['timeout']['std_param'] > 0 and aggval['timeout']['std_trace'] / aggval['timeout']['std_param'] < 0.5: aggval['timeout']['std_by_trace'] = mean_std_by_trace_part(by_trace, transition_names, name, 'timeouts') + for i, arg in enumerate(model['parameters']): + values = list(set([key[1][i] for key in by_arg.keys() if key[0] == name and is_numeric(key[1][i])])) + allvalues = [(*key[1][:i], *key[1][i+1:]) for key in by_arg.keys() if key[0] == name] + analyze_by_arg(aggval, by_arg, allvalues, name, 'duration', 'durations', arg['name'], i) + analyze_by_arg(aggval, by_arg, allvalues, name, 'energy', 'energies', arg['name'], i) + analyze_by_arg(aggval, by_arg, allvalues, name, 'rel_energy_prev', 'rel_energies_prev', arg['name'], i) + analyze_by_arg(aggval, by_arg, allvalues, name, 'rel_energy_next', 'rel_energies_next', arg['name'], i) + arguments = list(map(lambda x: x['name'], model['parameters'])) + arg_fguess_to_function(name, 'durations', aggval['duration'], arguments, by_arg, + 'estimated %s duration [µs]' % name) + arg_fguess_to_function(name, 'energies', aggval['energy'], arguments, by_arg, + 'estimated %s energy [pJ]' % name) + arg_fguess_to_function(name, 'rel_energies_prev', aggval['rel_energy_prev'], arguments, by_arg, + 'estimated relative %s energy [pJ]' % name) + arg_fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], arguments, by_arg, + 'estimated relative %s energy [pJ]' % name) + return aggdata try: diff --git a/lib/Kratos/DFADriver.pm b/lib/Kratos/DFADriver.pm index b894248..b393415 100644 --- a/lib/Kratos/DFADriver.pm +++ b/lib/Kratos/DFADriver.pm @@ -139,8 +139,11 @@ sub log { } sub assess_fits { - my ( $self, $hash, $param ) = @_; - my $errmap = $hash->{fit_guess}{$param}; + my ( $self, $hash, $param, $funtype ) = @_; + + $funtype //= 'fit_guess'; + + my $errmap = $hash->{$funtype}{$param}; my @errors = map { [ $_, $errmap->{$_} ] } keys %{$errmap}; @errors = sort { $a->[1]{rmsd} <=> $b->[1]{rmsd} } @errors; @@ -320,6 +323,7 @@ sub printf_parameterized { my $std_ind_arg = $hash->{std_arg}; my $std_ind_param = $hash->{std_param}; my $std_ind_trace = $hash->{std_trace}; + my $std_by_arg = $hash->{std_by_arg} // {}; my $std_by_param = $hash->{std_by_param}; my $std_by_trace = $hash->{std_by_trace} // {}; my $arg_ratio; @@ -400,12 +404,32 @@ sub printf_parameterized { $status = 'depends'; } if ($fline) { - printf( " %s: %s on %s (%.2f / %.2f = %.3f%s)\n", + printf( " %s: %s on global %s (%.2f / %.2f = %.3f%s)\n", $key, $status, $param, $std_ind_param, $std_this, $ratio, $fline ); } } + for my $arg ( sort keys %{$std_by_arg} ) { + my $std_this = $std_by_arg->{$arg}; + my $ratio = $std_ind_arg / $std_this; + my $status = 'does not depend'; + my $fline = q{}; + if ( $ratio < 0.6 ) { + $status = 'might depend'; + $fline = q{, probably }; + $fline .= join( ' or ', $self->assess_fits( $hash, $arg, 'arg_fit_guess' ) ); + } + if ( $ratio < 0.3 ) { + $status = 'depends'; + } + if ($fline) { + printf( " %s: %s on local %s (%.2f / %.2f = %.3f%s)\n", + $key, $status, $arg, $std_ind_arg, $std_this, $ratio, + $fline ); + } + } + for my $transition ( sort keys %{$std_by_trace} ) { my $std_this = $std_by_trace->{$transition}; my $ratio = $std_ind_trace / $std_this; @@ -467,6 +491,34 @@ sub printf_fit { $hash->{param_mean_goodness}{rmsd} ); } + if ( exists $hash->{arg_function}{user} ) { + if ( exists $hash->{arg_function}{user}{error} ) { + printf( " user-specifed %s argfunction could not be fitted: %s\n", + $key, $hash->{arg_function}{user}{error} ); + } + else { + printf( + " user-specifed %s argfunction fit error: %.2f%% / %.f %s\n", + $key, + $hash->{arg_function}{user}{fit}{smape} // -1, + $hash->{arg_function}{user}{fit}{mae}, $unit + ); + } + } + if ( exists $hash->{arg_function}{estimate} ) { + if ( exists $hash->{arg_function}{estimate}{error} ) { + printf( " estimated %s argfunction could not be fitted: %s\n", + $key, $hash->{arg_function}{estimate}{error} ); + } + else { + printf( + " estimated %s argfunction fit error: %.2f%% / %.f %s\n", + $key, + $hash->{arg_function}{estimate}{fit}{smape} // -1, + $hash->{arg_function}{estimate}{fit}{mae}, $unit + ); + } + } if ( exists $hash->{arg_mean_goodness} ) { printf( " %s: arg mean/ssr-fit LUT error: %.2f%% / %.f %s / %.f\n", |