summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/loader.py137
1 files changed, 133 insertions, 4 deletions
diff --git a/lib/loader.py b/lib/loader.py
index c35eb4c..65d497b 100644
--- a/lib/loader.py
+++ b/lib/loader.py
@@ -107,7 +107,14 @@ def _preprocess_mimosa(measurement):
def _preprocess_etlog(measurement):
setup = measurement["setup"]
- etlog = EnergyTraceLog(
+
+ energytrace_class = EnergyTraceWithBarcode
+ if measurement["sync_mode"] == "la":
+ energytrace_class = EnergyTraceWithLogicAnalyzer
+ elif measurement["sync_mode"] == "timer":
+ energytrace_class = EnergyTraceWithTimer
+
+ etlog = energytrace_class(
float(setup["voltage"]),
int(setup["state_duration"]),
measurement["transition_names"],
@@ -406,7 +413,7 @@ class RawData:
processed_data["error"] = "; ".join(processed_data["datasource_errors"])
return False
- # Note that the low-level parser (EnergyTraceLog) already checks
+ # Note that the low-level parser (EnergyTraceWithBarcode) already checks
# whether the transition count is correct
return True
@@ -909,6 +916,10 @@ class RawData:
new_filenames = list()
with tarfile.open(filename) as tf:
ptalog = self.ptalog
+ if "sync" in ptalog["opt"]["energytrace"]:
+ sync_mode = ptalog["opt"]["energytrace"]["sync"]
+ else:
+ sync_mode = "bar"
# Benchmark code may be too large to be executed in a single
# run, so benchmarks (a benchmark is basically a list of DFA runs)
@@ -968,6 +979,7 @@ class RawData:
offline_data.append(
{
"content": tf.extractfile(member).read(),
+ "sync_mode": sync_mode,
"fileno": j,
"info": member,
"setup": self.setup_by_fileno[j],
@@ -1161,7 +1173,7 @@ def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
return by_name, parameter_names, arg_count
-class EnergyTraceLog:
+class EnergyTraceWithBarcode:
"""
EnergyTrace log loader for DFA traces.
@@ -1184,7 +1196,7 @@ class EnergyTraceLog:
with_traces=False,
):
"""
- Create a new EnergyTraceLog object.
+ Create a new EnergyTraceWithBarcode object.
:param voltage: supply voltage [V], usually 3.3 V
:param state_duration: state duration [ms]
@@ -1599,6 +1611,123 @@ class EnergyTraceLog:
return None, None, None, None
+class EnergyTraceWithLogicAnalyzer:
+ def __init__(
+ self,
+ voltage: float,
+ state_duration: int,
+ transition_names: list,
+ with_traces=False,
+ ):
+ """
+ Create a new EnergyTraceWithLogicAnalyzer object.
+
+ :param voltage: supply voltage [V], usually 3.3 V
+ :param state_duration: state duration [ms]
+ :param transition_names: list of transition names in PTA transition order.
+ Needed to map barcode synchronization numbers to transitions.
+ """
+ self.voltage = voltage
+ self.state_duration = state_duration * 1e-3
+ self.transition_names = transition_names
+ self.with_traces = with_traces
+ self.errors = list()
+
+ def load_data(self, log_data):
+ # TODO Daten laden
+ pass
+
+ def analyze_states(self, traces, offline_index: int):
+ u"""
+ Split log data into states and transitions and return duration, energy, and mean power for each element.
+
+ :param traces: expected traces, needed to synchronize with the measurement.
+ traces is a list of runs, traces[*]['trace'] is a single run
+ (i.e. a list of states and transitions, starting with a transition
+ and ending with a state).
+ :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes
+
+ :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
+ :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
+ :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
+
+ :returns: returns list of states and transitions, starting with a transition and ending with astate
+ Each element is a dict containing:
+ * `isa`: 'state' or 'transition'
+ * `W_mean`: Mittelwert der Leistungsaufnahme
+ * `W_std`: Standardabweichung der Leistungsaufnahme
+ * `s`: Dauer
+ if isa == 'transition, it also contains:
+ * `W_mean_delta_prev`: Differenz zwischen W_mean und W_mean des vorherigen Zustands
+ * `W_mean_delta_next`: Differenz zwischen W_mean und W_mean des Folgezustands
+ """
+
+ # TODO Tatsächlich Daten auswerten
+
+ energy_trace = list()
+
+ expected_transitions = list()
+ for trace_number, trace in enumerate(traces):
+ for state_or_transition_number, state_or_transition in enumerate(
+ trace["trace"]
+ ):
+ if state_or_transition["isa"] == "transition":
+ try:
+ expected_transitions.append(
+ (
+ state_or_transition["name"],
+ state_or_transition["online_aggregates"]["duration"][
+ offline_index
+ ]
+ * 1e-6,
+ )
+ )
+ except IndexError:
+ self.errors.append(
+ 'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
+ state_or_transition_number,
+ state_or_transition["name"],
+ trace_number,
+ offline_index,
+ )
+ )
+ return energy_trace
+
+ for name, duration in expected_transitions:
+ transition = {
+ "isa": "transition",
+ "W_mean": max(np.random.normal(0.023, 0.002), 0),
+ "W_std": 0.0001,
+ "s": duration,
+ }
+
+ energy_trace.append(transition)
+
+ if len(energy_trace) > 1:
+ energy_trace[-1]["W_mean_delta_prev"] = (
+ energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
+ )
+
+ state = {
+ "isa": "state",
+ "W_mean": max(np.random.normal(0.023, 0.002), 0),
+ "W_std": 0.0001,
+ "s": self.state_duration,
+ }
+
+ energy_trace.append(state)
+
+ energy_trace[-2]["W_mean_delta_next"] = (
+ energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
+ )
+
+ return energy_trace
+
+
+class EnergyTraceWithTimer(EnergyTraceWithLogicAnalyzer):
+ pass
+
+
class MIMOSA:
"""
MIMOSA log loader for DFA traces with auto-calibration.