summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xbin/analyze-timing.py25
1 files changed, 25 insertions, 0 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index 2f60d1f..7e8174d 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -62,6 +62,12 @@ Options:
--export-energymodel=<model.json>
Export energy model. Requires --hwmodel.
+
+--filter-param=<parameter name>=<parameter value>
+ Only consider measurements where <parameter name> is <parameter value>
+ All other measurements (including those where it is None, that is, has
+ not been set yet) are discarded. Note that this may remove entire
+ function calls from the model.
"""
import getopt
@@ -141,6 +147,7 @@ if __name__ == '__main__':
optspec = (
'plot-unparam= plot-param= show-models= show-quality= '
'ignored-trace-indexes= discard-outliers= function-override= '
+ 'filter-param= '
'cross-validate= '
'corrcoef '
'with-safe-functions hwmodel= export-energymodel='
@@ -184,6 +191,9 @@ if __name__ == '__main__':
if 'corrcoef' not in opts:
opts['corrcoef'] = False
+ if 'filter-param' in opts:
+ opts['filter-param'] = opts['filter-param'].split('=')
+
except getopt.GetoptError as err:
print(err)
sys.exit(2)
@@ -192,6 +202,21 @@ if __name__ == '__main__':
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
+
+ if 'filter-param' in opts:
+ param_index = parameters.index(opts['filter-param'][0])
+ param_value = soft_cast_int(opts['filter-param'][1])
+ names_to_remove = set()
+ for name in by_name.keys():
+ indices_to_keep = list(map(lambda x: x[param_index] == param_value, by_name[name]['param']))
+ by_name[name]['param'] = list(map(lambda iv: iv[1], filter(lambda iv: indices_to_keep[iv[0]], enumerate(by_name[name]['param']))))
+ for attribute in by_name[name]['attributes']:
+ by_name[name][attribute] = by_name[name][attribute][indices_to_keep]
+ if len(by_name[name][attribute]) == 0:
+ names_to_remove.add(name)
+ for name in names_to_remove:
+ by_name.pop(name)
+
model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef = opts['corrcoef'])
if xv_method: