diff options
-rwxr-xr-x | bin/eval-kconfig.py | 84 | ||||
-rw-r--r-- | lib/loader.py | 2 | ||||
-rw-r--r-- | lib/model.py | 41 |
3 files changed, 124 insertions, 3 deletions
diff --git a/bin/eval-kconfig.py b/bin/eval-kconfig.py new file mode 100755 index 0000000..1f44b9e --- /dev/null +++ b/bin/eval-kconfig.py @@ -0,0 +1,84 @@ +#!/usr/bin/env python3 + +"""eval-kconfig - tbd +""" + +import argparse +import json +import kconfiglib +import logging +import os +import sys + +from dfatool import kconfig, validation +from dfatool.loader import KConfigAttributes +from dfatool.model import KConfigModel + +from versuchung.experiment import Experiment +from versuchung.types import String, Bool, Integer +from versuchung.files import File, Directory + + +def main(): + parser = argparse.ArgumentParser( + formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__ + ) + parser.add_argument( + "--log-level", + default=logging.INFO, + type=lambda level: getattr(logging, level.upper()), + help="Set log level", + ) + parser.add_argument( + "--attribute", choices=["rom", "ram"], default="rom", help="Model attribute" + ) + parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file") + parser.add_argument( + "experiment_root", type=str, help="Experiment results directory" + ) + parser.add_argument("model", type=str, help="JSON model", nargs="?") + + args = parser.parse_args() + + if isinstance(args.log_level, int): + logging.basicConfig(level=args.log_level) + else: + print(f"Invalid log level. Setting log level to INFO.", file=sys.stderr) + + data = KConfigAttributes(args.kconfig_path, args.experiment_root) + + k = 10 + + partition_pairs = validation._xv_partitions_kfold(len(data.data), k) + measures = list() + for training_set, validation_set in partition_pairs: + model = KConfigModel.from_benchmark(data, args.attribute, indices=training_set) + model.build_tree() + measures.append(model.assess_benchmark(data, indices=validation_set)) + + aggregate = dict() + for measure in measures[0].keys(): + aggregate[measure] = np.mean(map(lambda m: m[measure], measures)) + aggregate["unpredictable_count"] = np.sum( + map(lambda m: m["unpredictable_count"], measures) + ) + + print("10-fold Cross Validation:") + print(f"MAE: {aggregate['mae']:.0f} B") + print(f"SMAPE: {aggregate['smape']:.0f} %") + print(f"Unpredictable Configurations: {aggregate['unpredictable_count']}") + + print(aggregate) + + """ + if args.model: + with open(args.model, "r") as f: + model = KConfigModel.from_json(json.load(f)) + else: + model = KConfigModel.from_benchmark(data, args.attribute) + model.build_tree() + """ + + +if __name__ == "__main__": + main() diff --git a/lib/loader.py b/lib/loader.py index 14b7853..5e9b20a 100644 --- a/lib/loader.py +++ b/lib/loader.py @@ -1974,8 +1974,10 @@ class KConfigAttributes: self.choice[choice.name] = choice self.data = list() + self.configs = list() for config_path, attr_path in experiments: + self.configs.append(config_path) kconf.load_config(config_path) with open(attr_path, "r") as f: attr = json.load(f) diff --git a/lib/model.py b/lib/model.py index f330327..f422204 100644 --- a/lib/model.py +++ b/lib/model.py @@ -1158,7 +1158,11 @@ class PTAModel: class KConfigModel: - """Decision-Tree Model for a specific system attribute such as ROM or RAM usage""" + """ + Decision-Tree Model for a specific system attribute such as ROM or RAM usage. + + See Guo et al: "Data-efficient performance learning for configurable systems", 2017 + """ class Node: pass @@ -1280,6 +1284,8 @@ class KConfigModel: kconf_choice = next( filter(lambda choice: choice.name == self.symbol, kconf.choices) ) + if kconf_choice.selection is None: + return None selection = kconf_choice.selection.name if selection in self.choice: return self.choice[selection].model(kconf) @@ -1299,9 +1305,14 @@ class KConfigModel: return ret @classmethod - def from_benchmark(cls, kconfig_benchmark, attribute): + def from_benchmark(cls, kconfig_benchmark, attribute, indices=None): self = cls() - self.data = kconfig_benchmark.data + if indices is None: + self.data = kconfig_benchmark.data + else: + self.data = list() + for i in indices: + self.data.append(kconfig_benchmark.data[i]) self.symbols = kconfig_benchmark.symbol_names self.choices = kconfig_benchmark.choice_names self.symbol = kconfig_benchmark.symbol @@ -1459,3 +1470,27 @@ class KConfigModel: ) return node + + def assess_benchmark(self, kconfig_benchmark, indices=None): + if indices is None: + indices = range(len(kconfig_benchmark.data)) + + kconf = kconfig_benchmark.kconf + + predictions = list() + values = list() + unpredictable_count = 0 + + for i in indices: + kconf.load_config(kconfig_benchmark.configs[i]) + prediction = self.model.model(kconf) + + if prediction is None: + unpredictable_count += 1 + else: + predictions.append(self.model.model(kconf)) + values.append(self.attr_function(kconfig_benchmark.data[i])) + + measures = regression_measures(np.array(predictions), np.array(values)) + measures["unpredictable_count"] = unpredictable_count + return measures |