diff options
-rwxr-xr-x | bin/generate-dfa-benchmark.py | 38 | ||||
-rwxr-xr-x | lib/automata.py | 12 | ||||
-rwxr-xr-x | lib/dfatool.py | 20 | ||||
-rw-r--r-- | lib/harness.py | 6 |
4 files changed, 51 insertions, 25 deletions
diff --git a/bin/generate-dfa-benchmark.py b/bin/generate-dfa-benchmark.py index ce67313..76b9de4 100755 --- a/bin/generate-dfa-benchmark.py +++ b/bin/generate-dfa-benchmark.py @@ -1,4 +1,26 @@ #!/usr/bin/env python3 +""" +Generate a driver/library benchmark based on DFA/PTA traces. + +Usage: +PYTHONPATH=lib bin/generate-dfa-benchmark.py [options] <pta/dfa definition> + +generate-dfa-benchmarks reads in a DFA definition and generates runs +(i.e., all words accepted by the DFA up to a configurable length). Each symbol +corresponds to a function call. If arguments are specified in the DFA +definition, each symbol corresponds to a function call with a specific set of +arguments (so all argument combinations are present in the generated runs). + +Options: +--depth=<depth> (default: 3) + Maximum number of function calls per run + +--instance=<name> + Override the name of the class instance used for benchmarking + +--sleep=<ms> (default: 0) + How long to sleep between function calls. +""" import getopt import json @@ -6,7 +28,7 @@ import re import sys import yaml from automata import PTA -from harness import TransitionHarness +from harness import OnboardTimerHarness opt = {} @@ -44,11 +66,12 @@ if __name__ == '__main__': else: pta = PTA.from_yaml(yaml.safe_load(f)) - harness = TransitionHarness('GPIO::p1_0') + harness = OnboardTimerHarness('GPIO::p1_0') print('#include "arch.h"') - if pta.header: - print('#include "{}"'.format(pta.header)) + if 'includes' in pta.codegen: + for include in pta.codegen['includes']: + print('#include "{}"'.format(include)) print(harness.global_code()) print('void loop(void)') @@ -59,8 +82,8 @@ if __name__ == '__main__': class_prefix = '' if 'instance' in opt: class_prefix = '{}.'.format(opt['instance']) - elif pta.instance: - class_prefix = '{}.'.format(pta.instance) + elif 'intance' in pta.codegen: + class_prefix = '{}.'.format(pta.codegen['instance']) for run in pta.dfs(opt['depth'], with_arguments = True): print(harness.start_run()) @@ -85,6 +108,9 @@ if __name__ == '__main__': print('{') for driver in ('arch', 'gpio', 'kout'): print('{}.setup();'.format(driver)) + if 'setup' in pta.codegen: + for call in pta.codegen['setup']: + print(call) print('arch.idle_loop();') print('return 0;') print('}') diff --git a/lib/automata.py b/lib/automata.py index df8363f..94b3717 100755 --- a/lib/automata.py +++ b/lib/automata.py @@ -259,7 +259,7 @@ class PTA: def __init__(self, state_names: list = [], accepting_states: list = None, parameters: list = [], initial_param_values: list = None, - instance: str = None, header: str = None): + codegen: dict = {}): """ Return a new PTA object. @@ -275,8 +275,7 @@ class PTA: self.state = dict([[state_name, State(state_name)] for state_name in state_names]) self.accepting_states = accepting_states.copy() if accepting_states else None self.parameters = parameters.copy() - self.instance = instance - self.header = header + self.codegen = codegen if initial_param_values: self.initial_param_values = initial_param_values.copy() else: @@ -385,11 +384,8 @@ class PTA: if 'states' in yaml_input: kwargs['state_names'] = yaml_input['states'] - if 'instance' in yaml_input: - kwargs['instance'] = yaml_input['instance'] - - if 'header' in yaml_input: - kwargs['header'] = yaml_input['header'] + if 'codegen' in yaml_input: + kwargs['codegen'] = yaml_input['codegen'] pta = cls(**kwargs) diff --git a/lib/dfatool.py b/lib/dfatool.py index 38e140d..a089c1d 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -19,7 +19,7 @@ from utils import * arg_support_enabled = True -def running_mean(x, N): +def running_mean(x: np.ndarray, N: int) -> np.ndarray: """ Compute running average. @@ -44,7 +44,7 @@ def soft_cast_int(n): except ValueError: return n -def vprint(verbose, string): +def vprint(verbose: bool, string: str): """ Print string if verbose. @@ -69,7 +69,7 @@ def vprint(verbose, string): return x / y return 1. -def gplearn_to_function(function_str): +def gplearn_to_function(function_str: str): """ Convert gplearn-style function string to Python function. @@ -109,7 +109,7 @@ def gplearn_to_function(function_str): print(eval_str) return eval(eval_str, eval_globals) -def _elem_param_and_arg_list(elem): +def _elem_param_and_arg_list(elem: dict): param_dict = elem['parameter'] paramkeys = sorted(param_dict.keys()) paramvalue = [soft_cast_int(param_dict[x]) for x in paramkeys] @@ -117,10 +117,10 @@ def _elem_param_and_arg_list(elem): paramvalue.extend(map(soft_cast_int, elem['args'])) return paramvalue -def _arg_name(arg_index): +def _arg_name(arg_index: int) -> str: return '~arg{:02}'.format(arg_index) -def append_if_set(aggregate, data, key): +def append_if_set(aggregate: dict, data: dict, key: str): """Append data[key] to aggregate if key in data.""" if key in data: aggregate.append(data[key]) @@ -131,7 +131,7 @@ def mean_or_none(arr): return np.mean(arr) return -1 -def aggregate_measures(aggregate, actual): +def aggregate_measures(aggregate: float, actual: list) -> dict: """ Calculate error measures for model value on data list. @@ -145,7 +145,7 @@ def aggregate_measures(aggregate, actual): aggregate_array = np.array([aggregate] * len(actual)) return regression_measures(aggregate_array, np.array(actual)) -def regression_measures(predicted, actual): +def regression_measures(predicted: np.ndarray, actual: np.ndarray): """ Calculate error measures by comparing model values to reference values. @@ -204,7 +204,7 @@ class KeysightCSV: """Create a new KeysightCSV object.""" pass - def load_data(self, filename): + def load_data(self, filename: str): """ Load log data from filename, return timestamps and currents. @@ -225,7 +225,7 @@ class KeysightCSV: currents[i] = float(row[2]) * -1 return timestamps, currents -def by_name_to_by_param(by_name): +def by_name_to_by_param(by_name: dict): """ Convert aggregation by name to aggregation by name and parameter values. """ diff --git a/lib/harness.py b/lib/harness.py index 3f8d93c..67a9f7d 100644 --- a/lib/harness.py +++ b/lib/harness.py @@ -22,7 +22,11 @@ class OnboardTimerHarness: return ret def start_benchmark(self): - return 'ptalog.startBenchmark(0);\n' + ret = 'counter.start();\n' + ret += 'counter.stop();\n' + ret += 'ptalog.passNop(counter);\n' + ret += 'ptalog.startBenchmark(0);\n' + return ret def start_run(self): return 'ptalog.reset();\n' |