summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xbin/analyze-archive.py3
-rw-r--r--lib/loader.py9
-rw-r--r--lib/model.py107
-rw-r--r--lib/pelt.py130
-rw-r--r--lib/utils.py27
5 files changed, 183 insertions, 93 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index eca98c4..35beae8 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -643,7 +643,8 @@ if __name__ == "__main__":
)
if args.with_substates is not None:
- substate_model, substate_info = model.get_substates()
+ substate_model = model.get_substates()
+ print(model.assess(substate_model, ref=model.sc_by_name))
if "paramdetection" in show_models or "all" in show_models:
for state in model.states_and_transitions():
diff --git a/lib/loader.py b/lib/loader.py
index fff515f..4cb5dc0 100644
--- a/lib/loader.py
+++ b/lib/loader.py
@@ -651,8 +651,12 @@ class RawData:
online_trace_part["offline_aggregates"]["rel_energy_next"] = []
online_trace_part["offline_aggregates"]["timeout"] = []
elif "plot" in offline_trace_part:
- online_trace_part["offline_support"] = ["power_traces"]
+ online_trace_part["offline_support"] = [
+ "power_traces",
+ "timestamps",
+ ]
online_trace_part["offline_aggregates"]["power_traces"] = list()
+ online_trace_part["offline_aggregates"]["timestamps"] = list()
# Note: All state/transitions are 20us "too long" due to injected
# active wait states. These are needed to work around MIMOSA's
@@ -688,6 +692,9 @@ class RawData:
online_trace_part["offline_aggregates"]["power_traces"].append(
offline_trace_part["plot"][1]
)
+ online_trace_part["offline_aggregates"]["timestamps"].append(
+ offline_trace_part["plot"][0]
+ )
def _merge_online_and_etlog(self, measurement):
# Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
diff --git a/lib/model.py b/lib/model.py
index 1190fb0..ab46dc7 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -10,7 +10,7 @@ from .functions import analytic
from .functions import AnalyticFunction
from .parameters import ParamStats
from .utils import is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple
-from .utils import by_name_to_by_param, match_parameter_values
+from .utils import by_name_to_by_param, by_param_to_by_name, match_parameter_values
logger = logging.getLogger(__name__)
arg_support_enabled = True
@@ -921,29 +921,92 @@ class PTAModel:
return model_getter, info_getter
+ def pelt_refine(self, by_param_key):
+ logger.debug(f"PELT: {by_param_key} needs refinement")
+ # Assumption: All power traces for this parameter setting
+ # are similar, so determining the penalty for the first one
+ # is sufficient.
+ penalty, changepoints = self.pelt.get_penalty_and_changepoints(
+ self.by_param[by_param_key]["power_traces"][0]
+ )
+ if len(changepoints) == 0:
+ logger.debug(f" we found no changepoints with penalty {penalty}")
+ substate_counts = [1 for i in self.by_param[by_param_key]["param"]]
+ substate_data = {
+ "duration": self.by_param[by_param_key]["duration"],
+ "power": self.by_param[by_param_key]["power"],
+ "power_std": self.by_param[by_param_key]["power_std"],
+ }
+ return (substate_counts, substate_data)
+ logger.debug(
+ f" we found {len(changepoints)} changepoints with penalty {penalty}"
+ )
+ return self.pelt.calc_raw_states(
+ self.by_param[by_param_key]["timestamps"],
+ self.by_param[by_param_key]["power_traces"],
+ penalty,
+ )
+
def get_substates(self):
states = self.states()
+
+ substates_by_param = dict()
for k in self.by_param.keys():
if k[0] in states:
+ state_name = k[0]
if self.pelt.needs_refinement(self.by_param[k]["power_traces"]):
- logger.debug(f"PELT: {k} needs refinement")
- # Assumption: All power traces for this parameter setting
- # are similar, so determining the penalty for the first one
- # is sufficient.
- penalty, changepoints = self.pelt.get_penalty_and_changepoints(
- self.by_param[k]["power_traces"][0]
- )
- if len(changepoints):
- logger.debug(
- f" we found {len(changepoints)} changepoints with penalty {penalty}"
- )
- self.pelt.calc_raw_states(
- self.by_param[k]["power_traces"], penalty
- )
- else:
- logger.debug(
- f" we found no changepoints with penalty {penalty}"
- )
+ substates_by_param[k] = self.pelt_refine(k)
+ else:
+ substate_counts = [1 for i in self.by_param[k]["param"]]
+ substate_data = {
+ "duration": self.by_param[k]["duration"],
+ "power": self.by_param[k]["power"],
+ "power_std": self.by_param[k]["power_std"],
+ }
+ substates_by_param[k] = (substate_counts, substate_data)
+
+ # suitable for AEMR modeling
+ sc_by_param = dict()
+ for param_key, (substate_counts, _) in substates_by_param.items():
+ sc_by_param[param_key] = {
+ "attributes": ["substate_count"],
+ "isa": "state",
+ "substate_count": substate_counts,
+ "param": self.by_param[param_key]["param"],
+ }
+
+ sc_by_name = by_param_to_by_name(sc_by_param)
+ self.sc_by_name = sc_by_name
+ self.sc_by_param = sc_by_param
+ static_model = self._get_model_from_dict(self.sc_by_name, np.median)
+
+ def static_model_getter(name, key, **kwargs):
+ return static_model[name][key]
+
+ return static_model_getter
+
+ """
+ for k in self.by_param.keys():
+ if k[0] in states:
+ state_name = k[0]
+ if state_name not in pelt_by_name:
+ pelt_by_name[state_name] = dict()
+ if self.pelt.needs_refinement(self.by_param[k]["power_traces"]):
+ res = self.pelt_refine(k)
+ for substate_index, substate in enumerate(res):
+ if substate_index not in pelt_by_name[state_name]:
+ pelt_by_name[state_name][substate_index] = {
+ "attribute": ["power", "duration"],
+ "isa": "state",
+ "param": list(),
+ "power": list(),
+ "duration": list()
+ }
+ pelt_by_name[state_name][substate_index]["param"].extend(self.by_param[k]["param"][:len(substate["power"])])
+ pelt_by_name[state_name][substate_index]["power"].extend(substate["power"])
+ pelt_by_name[state_name][substate_index]["duration"].extend(substate["duration"])
+ print(pelt_by_name)
+ """
return None, None
@@ -994,7 +1057,7 @@ class PTAModel:
def attributes(self, state_or_trans):
return self.by_name[state_or_trans]["attributes"]
- def assess(self, model_function):
+ def assess(self, model_function, ref=None):
"""
Calculate MAE, SMAPE, etc. of model_function for each by_name entry.
@@ -1008,7 +1071,9 @@ class PTAModel:
overfitting cannot be detected.
"""
detailed_results = {}
- for name, elem in sorted(self.by_name.items()):
+ if ref is None:
+ ref = self.by_name
+ for name, elem in sorted(ref.items()):
detailed_results[name] = {}
for key in elem["attributes"]:
predicted_data = np.array(
diff --git a/lib/pelt.py b/lib/pelt.py
index a215b28..518bef7 100644
--- a/lib/pelt.py
+++ b/lib/pelt.py
@@ -1,6 +1,9 @@
+import logging
import numpy as np
from multiprocessing import Pool
+logger = logging.getLogger(__name__)
+
def PELT_get_changepoints(algo, penalty):
res = (penalty, algo.predict(pen=penalty))
@@ -10,42 +13,21 @@ def PELT_get_changepoints(algo, penalty):
# calculates the raw_states for measurement measurement. num_measurement is used to identify the
# return value
# penalty, model and jump are directly passed to pelt
-def PELT_get_raw_states(num_measurement, algo, signal, penalty):
- bkpts = algo.predict(pen=penalty)
- calced_states = list()
- start_time = 0
- end_time = 0
+def PELT_get_raw_states(num_measurement, algo, penalty):
+ changepoints = algo.predict(pen=penalty)
+ substates = list()
+ start_index = 0
+ end_index = 0
# calc metrics for all states
- for bkpt in bkpts:
- # start_time of state is end_time of previous one
+ for changepoint in changepoints:
+ # start_index of state is end_index of previous one
# (Transitions are instantaneous)
- start_time = end_time
- end_time = bkpt
- power_vals = signal[start_time:end_time]
- mean_power = np.mean(power_vals)
- std_dev = np.std(power_vals)
- calced_state = (start_time, end_time, mean_power, std_dev)
- calced_states.append(calced_state)
- num = 0
- new_avg_std = 0
- # calc avg std for all states from this measurement
- for s in calced_states:
- # print_info("State " + str(num) + " starts at t=" + str(s[0])
- # + " and ends at t=" + str(s[1])
- # + " while using " + str(s[2])
- # + "uW with sigma=" + str(s[3]))
- num = num + 1
- new_avg_std = new_avg_std + s[3]
- # check case if no state has been found to avoid crashing
- if len(calced_states) != 0:
- new_avg_std = new_avg_std / len(calced_states)
- else:
- new_avg_std = 0
- change_avg_std = None # measurement["uW_std"] - new_avg_std
- # print_info("The average standard deviation for the newly found states is "
- # + str(new_avg_std))
- # print_info("That is a reduction of " + str(change_avg_std))
- return num_measurement, calced_states, new_avg_std, change_avg_std
+ start_index = end_index
+ end_index = changepoint - 1
+ substate = (start_index, end_index)
+ substates.append(substate)
+
+ return num_measurement, substates
class PELT:
@@ -54,7 +36,7 @@ class PELT:
self.jump = 1
self.min_dist = 10
self.num_samples = None
- self.refinement_threshold = 200e-6 # µW
+ self.refinement_threshold = 200e-6 # 200 µW
self.range_min = 0
self.range_max = 100
self.__dict__.update(kwargs)
@@ -89,7 +71,6 @@ class PELT:
if self.num_samples is not None and len(signal) > self.num_samples:
self.jump = len(signal) // int(self.num_samples)
- print(f"jump = {self.jump}")
else:
self.jump = 1
@@ -106,29 +87,29 @@ class PELT:
if len(res[1]) > 0 and res[1][-1] == len(signal):
res[1].pop()
changepoints_by_penalty[res[0]] = res[1]
- num_changepoints = list()
+ changepoint_counts = list()
for i in range(0, 100):
- num_changepoints.append(len(changepoints_by_penalty[i]))
+ changepoint_counts.append(len(changepoints_by_penalty[i]))
start_index = -1
end_index = -1
longest_start = -1
longest_end = -1
prev_val = -1
- for i, num_bkpts in enumerate(num_changepoints):
- if num_bkpts != prev_val:
+ for i, num_changepoints in enumerate(changepoint_counts):
+ if num_changepoints != prev_val:
end_index = i - 1
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
- if i == len(num_changepoints) - 1:
+ if i == len(changepoint_counts) - 1:
end_index = i
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
- prev_val = num_bkpts
+ prev_val = num_changepoints
middle_of_plateau = longest_start + (longest_start - longest_start) // 2
changepoints = np.array(changepoints_by_penalty[middle_of_plateau])
return middle_of_plateau, changepoints
@@ -141,48 +122,57 @@ class PELT:
penalty, _ = self.get_penalty_and_changepoints(signal)
return penalty
- def calc_raw_states(self, signals, penalty, opt_model=None):
+ def calc_raw_states(self, timestamps, signals, penalty, opt_model=None):
+ """
+ Calculate substates for signals (assumed to be long to a single parameter configuration).
+
+ :returns: List of substates with duration and mean power: [(substate 1 duration, substate 1 power), ...]
+ """
+
# imported here as ruptures is only used for changepoint detection.
# This way, dfatool can be used without having ruptures installed as
# long as --pelt isn't active.
import ruptures
+ substate_data = list()
+
raw_states_calc_args = list()
for num_measurement, measurement in enumerate(signals):
normed_signal = self.norm_signal(measurement)
algo = ruptures.Pelt(
model=self.model, jump=self.jump, min_size=self.min_dist
).fit(normed_signal)
- raw_states_calc_args.append((num_measurement, algo, normed_signal, penalty))
+ raw_states_calc_args.append((num_measurement, algo, penalty))
raw_states_list = [None] * len(signals)
with Pool() as pool:
raw_states_res = pool.starmap(PELT_get_raw_states, raw_states_calc_args)
- # extracting result and putting it in correct order -> index of raw_states_list
- # entry still corresponds with index of measurement in measurements_by_states
- # -> If measurements are discarded the used ones are easily recognized
- for ret_val in raw_states_res:
- num_measurement = ret_val[0]
- raw_states = ret_val[1]
- avg_std = ret_val[2]
- change_avg_std = ret_val[3]
- # FIXME: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
- # int sein oder nicht? Es scheint auch vernünftig zu klappen...
- raw_states_list[num_measurement] = raw_states
- # print(
- # "The average standard deviation for the newly found states in "
- # + "measurement No. "
- # + str(num_measurement)
- # + " is "
- # + str(avg_std)
- # )
- # print("That is a reduction of " + str(change_avg_std))
- for i, raw_state in enumerate(raw_states):
- print(
- f"Measurement #{num_measurement} sub-state #{i}: {raw_state[0]} -> {raw_state[1]}, mean {raw_state[2]}"
+ substate_counts = list(map(lambda x: len(x[1]), raw_states_res))
+ expected_substate_count = np.argmax(np.bincount(substate_counts))
+ usable_measurements = list(
+ filter(lambda x: len(x[1]) == expected_substate_count, raw_states_res)
+ )
+ logger.debug(
+ f" There are {expected_substate_count} substates (std = {np.std(substate_counts)}, {len(usable_measurements)}/{len(raw_states_res)} results are usable)"
+ )
+
+ for i in range(expected_substate_count):
+ substate_data.append(
+ {"duration": list(), "power": list(), "power_std": list()}
+ )
+
+ for num_measurement, substates in usable_measurements:
+ for i, substate in enumerate(substates):
+ power_trace = signals[num_measurement][substate[0] : substate[1]]
+ mean_power = np.mean(power_trace)
+ std_power = np.std(power_trace)
+ duration = (
+ timestamps[num_measurement][substate[1]]
+ - timestamps[num_measurement][substate[0]]
)
- # l_signal = measurements_by_config['offline'][num_measurement]['uW']
- # l_bkpts = [s[1] for s in raw_states]
- # fig, ax = rpt.display(np.array(l_signal), l_bkpts)
- # plt.show()
+ substate_data[i]["duration"].append(duration)
+ substate_data[i]["power"].append(mean_power)
+ substate_data[i]["power_std"].append(std_power)
+
+ return substate_counts, substate_data
diff --git a/lib/utils.py b/lib/utils.py
index 2ed3d6e..c8f31c2 100644
--- a/lib/utils.py
+++ b/lib/utils.py
@@ -199,6 +199,33 @@ def by_name_to_by_param(by_name: dict):
return by_param
+def by_param_to_by_name(by_param: dict) -> dict:
+ """
+ Convert aggregation by name and parameter values to aggregation by name only.
+ """
+ by_name = dict()
+ for param_key in by_param.keys():
+ name, _ = param_key
+ if name not in by_name:
+ by_name[name] = dict()
+ for key in by_param[param_key].keys():
+ by_name[name][key] = list()
+ by_name[name]["attributes"] = by_param[param_key]["attributes"]
+ # special case for PTA models
+ if "isa" in by_param[param_key]:
+ by_name[name]["isa"] = by_param[param_key]["isa"]
+ for attribute in by_name[name]["attributes"]:
+ by_name[name][attribute].extend(by_param[param_key][attribute])
+ if "supports" in by_param[param_key]:
+ for support in by_param[param_key]["supports"]:
+ by_name[name][support].extend(by_param[param_key][support])
+ by_name[name]["param"].extend(by_param[param_key]["param"])
+ for name in by_name.keys():
+ for attribute in by_name[name]["attributes"]:
+ by_name[name][attribute] = np.array(by_name[name][attribute])
+ return by_name
+
+
def filter_aggregate_by_param(aggregate, parameters, parameter_filter):
"""
Remove entries which do not have certain parameter values from `aggregate`.