diff options
-rwxr-xr-x | lib/dfatool.py | 58 | ||||
-rw-r--r-- | lib/utils.py | 37 |
2 files changed, 66 insertions, 29 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 616e6fd..ac0885b 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -15,7 +15,7 @@ from multiprocessing import Pool from automata import PTA from functions import analytic from functions import AnalyticFunction -from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple +from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple, is_power_of_two, distinct_param_values arg_support_enabled = True @@ -430,6 +430,48 @@ class ParamStats: """ return 1 - self._generic_param_independence_ratio(state_or_trans, attribute) + def _reduce_param_matrix(self, matrix: np.ndarray, parameter_names: list) -> list: + """ + :param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...) + :param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc. + :returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not + affect (parameter)'s influence on (model attribute) -- it either always or never has an influence + """ + if np.all(matrix == True) or np.all(matrix == False): + return list() + + if not is_power_of_two(np.count_nonzero(matrix)): + # cannot be reliably reduced to a list of parameters + return list() + + if np.count_nonzero(matrix) == 1: + influential_parameters = list() + for i, parameter_name in enumerate(parameter_names): + if matrix.shape[i] > 1: + influential_parameters.append(parameter_name) + return influential_parameters + + for axis in range(matrix.ndim): + candidate = self._reduce_param_matrix(np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis)) + if len(candidate): + return candidate + + return list() + + def _get_codependent_parameters(self, stats, param): + """ + Return list of parameters which affect whether `param` influences the model attribute described in `stats` or not. + """ + safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y) + ratio_by_value = safe_div(stats['lut_by_param_values'][param], stats['std_by_param_values'][param]) + err_mode = np.seterr('ignore') + dep_by_value = ratio_by_value > 0.5 + np.seterr(**err_mode) + + other_param_list = list(filter(lambda x: x != param, self._parameter_names)) + influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list) + return influencer_parameters + def _param_independence_ratio(self, state_or_trans, attribute, param): """ Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param. @@ -446,17 +488,9 @@ class ParamStats: # This means that the variation of param does not affect the model quality -> no influence, return 1 return 1. - safe_div = np.vectorize(lambda x,y: 1. if x == 0 else x/y) - std_by_value = safe_div(statistics['lut_by_param_values'][param], statistics['std_by_param_values'][param]) - - i = 0 - for other_param in self._parameter_names: - if param != other_param and not np.any(np.isnan(std_by_value)) and std_by_value.shape[i] > 1: - dep1 = np.all(std_by_value < 0.5, axis=i) - dep2 = np.all(std_by_value >= 0.5, axis=i) - if np.any(dep1 | dep2 == False): - print('possible correlation {}/{} {} <-> {}'.format(state_or_trans, attribute, param, other_param)) - i += 1 + influencer_parameters = self._get_codependent_parameters(statistics, param) + if len(influencer_parameters): + print('{}/{} {} <-> {}'.format(state_or_trans, attribute, param, influencer_parameters)) return statistics['std_param_lut'] / statistics['std_by_param'][param] diff --git a/lib/utils.py b/lib/utils.py index 0910d8a..549b673 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -23,6 +23,10 @@ def is_numeric(n): except ValueError: return False +def is_power_of_two(n): + """Check if `n` is a power of two (1, 2, 4, 8, 16, ...).""" + return n > 0 and (n & (n-1)) == 0 + def float_or_nan(n): """Convert `n` to float (if numeric) or NaN.""" if n == None: @@ -34,7 +38,7 @@ def float_or_nan(n): def soft_cast_int(n): """ - Convert `n` to int, if possible. + Convert `n` to int (if numeric) or return it as-is. If `n` is empty, returns None. If `n` is not numeric, it is left unchanged. @@ -48,7 +52,7 @@ def soft_cast_int(n): def soft_cast_float(n): """ - Convert `n` to float, if possible. + Convert `n` to float (if numeric) or return it as-is. If `n` is empty, returns None. If `n` is not numeric, it is left unchanged. @@ -232,15 +236,17 @@ def compute_param_statistics(by_name, by_param, parameter_names, arg_count, stat np.seterr('raise') + param_values = distinct_param_values(by_name, state_or_trans) + for param_idx, param in enumerate(parameter_names): - std_matrix, mean_std, lut_matrix = _std_by_param(by_param, state_or_trans, attribute, param_idx, verbose) + std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, param_idx, verbose) ret['std_by_param'][param] = mean_std ret['std_by_param_values'][param] = std_matrix ret['lut_by_param_values'][param] = lut_matrix ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx) if arg_support_enabled and state_or_trans in arg_count: for arg_index in range(arg_count[state_or_trans]): - std_matrix, mean_std, lut_matrix = _std_by_param(by_param, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) + std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) ret['std_by_arg'].append(mean_std) ret['std_by_arg_values'].append(std_matrix) ret['lut_by_arg_values'].append(lut_matrix) @@ -248,13 +254,13 @@ def compute_param_statistics(by_name, by_param, parameter_names, arg_count, stat return ret -def _param_values(by_param, state_or_tran): +def distinct_param_values(by_name, state_or_tran): """ - Return the distinct values of each parameter in by_param. + Return the distinct values of each parameter in by_name[state_or_tran]. - E.g. if by_param.keys() contains the distinct parameter values (1, 1), (1, 2), (1, 3), (0, 3), + E.g. if by_name[state_or_tran]['param'] contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3), this function returns [[1, 0], [1, 2, 3]]. - Note that the order is not deterministic at the moment. + Note that the order is not guaranteed to be deterministic at the moment. Also note that this function deliberately also consider None (uninitialized parameter with unknown value) as a distinct value. Benchmarks @@ -262,21 +268,19 @@ def _param_values(by_param, state_or_tran): not important yet, e.g. a packet length parameter must only be None when write() or similar has not been called yet. Other parameters should always be initialized when leaving UNINITIALIZED. - """ - param_tuples = list(map(lambda x: x[1], filter(lambda x: x[0] == state_or_tran, by_param.keys()))) - distinct_values = [set() for i in range(len(param_tuples[0]))] - for param_tuple in param_tuples: + # TODO a set() is an _unordered_ collection, so this must be converted to + # an OrderedDict or a list with a duplicate-pruning step + distinct_values = [set() for i in range(len(by_name[state_or_tran]['param'][0]))] + for param_tuple in by_name[state_or_tran]['param']: for i in range(len(param_tuple)): distinct_values[i].add(param_tuple[i]) - # TODO returned values must have a deterministic order - # Convert sets to lists distinct_values = list(map(list, distinct_values)) return distinct_values -def _std_by_param(by_param, state_or_tran, attribute, param_index, verbose = False): +def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False): u""" Calculate standard deviations for a static model where all parameters but param_index are constant. @@ -299,8 +303,7 @@ def _std_by_param(by_param, state_or_tran, attribute, param_index, verbose = Fal stddev of measurements with param0 == a, param1 == b, param2 variable, and param3 == d. """ - # TODO precalculate or cache info_shape (it only depends on state_or_tran) - param_values = list(remove_index_from_tuple(_param_values(by_param, state_or_tran), param_index)) + param_values = list(remove_index_from_tuple(all_param_values, param_index)) info_shape = tuple(map(len, param_values)) # We will calculate the mean over the entire matrix later on. We cannot |