diff options
-rwxr-xr-x | bin/workload.py | 4 | ||||
-rwxr-xr-x | lib/automata.py | 31 |
2 files changed, 31 insertions, 4 deletions
diff --git a/bin/workload.py b/bin/workload.py index ef89b0d..e294b95 100755 --- a/bin/workload.py +++ b/bin/workload.py @@ -29,5 +29,9 @@ print(trace) result = pta.simulate(trace) print('Duration: ' + human_readable(result.duration, 's')) +if result.duration_mae: + print(u' ± {} / {:.0f}%'.format(human_readable(result.duration_mae, 's'), result.duration_mape)) print('Energy: ' + human_readable(result.energy, 'J')) +if result.energy_mae: + print(u' ± {} / {:.0f}%'.format(human_readable(result.energy_mae, 'J'), result.energy_mape)) print('Mean Power: ' + human_readable(result.mean_power, 'W')) diff --git a/lib/automata.py b/lib/automata.py index eb52081..8e889aa 100755 --- a/lib/automata.py +++ b/lib/automata.py @@ -14,9 +14,13 @@ def _dict_to_list(input_dict: dict) -> list: class SimulationResult: - def __init__(self, duration: float, energy: float, end_state, parameters): + def __init__(self, duration: float, energy: float, end_state, parameters, duration_mae: float = None, energy_mae: float = None): self.duration = duration * 1e-6 + self.duration_mae = duration_mae * 1e-6 + self.duration_mape = self.duration_mae * 100 / self.duration self.energy = energy * 1e-12 + self.energy_mae = energy_mae * 1e-12 + self.energy_mape = self.energy_mae * 100 / self.energy self.end_state = end_state self.parameters = parameters self.mean_power = self.energy / self.duration @@ -40,6 +44,12 @@ class PTAAttribute: return self.function.eval(param_list, args) return self.value + def eval_mae(self, param_dict=dict(), args=list()): + param_list = _dict_to_list(param_dict) + if self.function and self.function.is_predictable(param_list): + return self.function_error['mae'] + return self.value_error['mae'] + def to_json(self): ret = { 'static': self.value, @@ -58,8 +68,12 @@ class PTAAttribute: ret = cls() if 'static' in json_input: ret.value = json_input['static'] + if 'static_error' in json_input: + ret.value_error = json_input['static_error'] if 'function' in json_input: ret.function = AnalyticFunction(json_input['function']['raw'], parameters, 0, regression_args=json_input['function']['regression_args']) + if 'function_error' in json_input: + ret.function_error = json_input['function_error'] return ret @classmethod @@ -928,10 +942,12 @@ class PTA: The tuple (None, duration) represents a sleep time between states in us :param orig_state: origin state, default UNINITIALIZED - :returns (total energy in pJ, total duration in µs, end state, end parameters) + :returns: SimulationResult with duration in s, total energy in J, end state, and final parameters """ total_duration = 0. + total_duration_mae = 0. total_energy = 0. + total_energy_error = 0. state = self.state[orig_state] param_dict = dict([[self.parameters[i], self.initial_param_values[i]] for i in range(len(self.parameters))]) for function in trace: @@ -944,13 +960,20 @@ class PTA: if function_name is None: duration = function_args[0] total_energy += state.get_energy(duration, param_dict) + if state.power.value_error is not None: + total_energy_error += (duration * state.power.eval_mae(param_dict, function_args))**2 total_duration += duration + # assumption: sleep is near-exact and does not contribute to the duration error if accounting is not None: accounting.sleep(duration) else: transition = state.get_transition(function_name) - total_duration += transition.get_duration(param_dict, function_args) + total_duration += transition.duration.eval(param_dict, function_args) + if transition.duration.value_error is not None: + total_duration_mae += transition.duration.eval_mae(param_dict, function_args)**2 total_energy += transition.get_energy(param_dict, function_args) + if transition.energy.value_error is not None: + total_energy_error += transition.energy.eval_mae(param_dict, function_args)**2 param_dict = transition.get_params_after_transition(param_dict, function_args) state = transition.destination if accounting is not None: @@ -966,7 +989,7 @@ class PTA: param_dict = transition.get_params_after_transition(param_dict) state = transition.destination - return SimulationResult(total_duration, total_energy, state, param_dict) + return SimulationResult(total_duration, total_energy, state, param_dict, duration_mae=np.sqrt(total_duration_mae), energy_mae=np.sqrt(total_energy_error)) def update(self, static_model, param_model, static_error=None, analytic_error=None): for state in self.state.values(): |