summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/parameters.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index ac69075..e4fe03f 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -892,7 +892,7 @@ class ModelAttribute:
self.model_function = mf
return True
else:
- logger.warning(f"CART generation for {self.name} {self.attr} faled")
+ logger.warning(f"{self.name}:{self.attr}:CART failed")
self.model_function = df.StaticFunction(
np.mean(self.data), n_samples=len(self.data)
)
@@ -915,7 +915,7 @@ class ModelAttribute:
self.model_function = mf
return True
else:
- logger.warning(f"DECART generation for {self.name} {self.attr} faled")
+ logger.warning(f"{self.name}:{self.attr}:DECART failed")
self.model_function = df.StaticFunction(
np.mean(self.data), n_samples=len(self.data)
)
@@ -936,17 +936,17 @@ class ModelAttribute:
if len(self.stats.distinct_values_by_param_index[param_index]) < 2:
ignore_param_indexes.append(param_index)
x = df.FOLFunction(
- self.median,
- self.param_names,
+ np.mean(self.data),
n_samples=self.data.shape[0],
- num_args=self.arg_count,
+ param_names=self.param_names,
+ arg_count=self.arg_count,
)
x.fit(self.param_values, self.data, ignore_param_indexes=ignore_param_indexes)
if x.fit_success:
self.model_function = x
return True
else:
- logger.warning(f"Fit of first-order linear model function failed.")
+ logger.warning(f"{self.name}:{self.attr}:FOL failed")
self.model_function = df.StaticFunction(
np.mean(self.data), n_samples=len(self.data)
)
@@ -964,7 +964,7 @@ class ModelAttribute:
self.model_function = mf
return True
else:
- logger.warning(f"LMT generation for {self.name} {self.attr} faled")
+ logger.warning(f"{self.name}:{self.attr}:LMT failed")
self.model_function = df.StaticFunction(
np.mean(self.data), n_samples=len(self.data)
)
@@ -1006,7 +1006,7 @@ class ModelAttribute:
self.model_function = mf
return True
else:
- logger.warning(f"LightGBM generation for {self.name} {self.attr} faled")
+ logger.warning(f"{self.name}:{self.attr}:LightGBM failed")
self.model_function = df.StaticFunction(
np.mean(self.data), n_samples=len(self.data)
)
@@ -1024,7 +1024,7 @@ class ModelAttribute:
self.model_function = mf
return True
else:
- logger.warning(f"XGB generation for {self.name} {self.attr} faled")
+ logger.warning(f"{self.name}:{self.attr}:XGBoost failed")
self.model_function = df.StaticFunction(
np.mean(self.data), n_samples=len(self.data)
)