diff options
-rwxr-xr-x | bin/analyze-archive.py | 32 | ||||
-rwxr-xr-x | bin/eval-outlier-removal.py | 12 | ||||
-rwxr-xr-x | bin/eval-rel-energy.py | 4 | ||||
-rw-r--r-- | lib/data_parameters.py | 2 | ||||
-rwxr-xr-x | lib/dfatool.py | 159 |
5 files changed, 172 insertions, 37 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py index 21f9ceb..007ec25 100755 --- a/bin/analyze-archive.py +++ b/bin/analyze-archive.py @@ -41,6 +41,10 @@ Options: --discard-outliers= not supported at the moment +--cross-validate + Perform cross validation when computing model quality. + Only works with --show-quality=table at the moment. + --function-override=<name attribute function>[;<name> <attribute> <function>;...] Manually specify the function to fit for <name> <attribute>. A function specified this way bypasses parameter detection: It is always assigned, @@ -65,6 +69,7 @@ import re import sys from dfatool import PTAModel, RawData, pta_trace_to_aggregate from dfatool import soft_cast_int, is_numeric, gplearn_to_function +from dfatool import CrossValidator opts = {} @@ -86,14 +91,14 @@ def format_quality_measures(result): return '{:6} {:9.0f}'.format('', result['mae']) def model_quality_table(result_lists, info_list): - for state_or_tran in result_lists[0]['by_dfa_component'].keys(): - for key in result_lists[0]['by_dfa_component'][state_or_tran].keys(): + for state_or_tran in result_lists[0]['by_name'].keys(): + for key in result_lists[0]['by_name'][state_or_tran].keys(): buf = '{:20s} {:15s}'.format(state_or_tran, key) for i, results in enumerate(result_lists): info = info_list[i] buf += ' ||| ' if info == None or info(state_or_tran, key): - result = results['by_dfa_component'][state_or_tran][key] + result = results['by_name'][state_or_tran][key] buf += format_quality_measures(result) else: buf += '{:6}----{:9}'.format('', '') @@ -164,6 +169,7 @@ if __name__ == '__main__': optspec = ( 'plot-unparam= plot-param= show-models= show-quality= ' 'ignored-trace-indexes= discard-outliers= function-override= ' + 'cross-validate ' 'with-safe-functions hwmodel= export-energymodel=' ) raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' ')) @@ -212,6 +218,8 @@ if __name__ == '__main__': function_override = function_override, hwmodel = hwmodel) + if 'cross-validate' in opts: + xv = CrossValidator(PTAModel, by_name, parameters, arg_count) if 'plot-unparam' in opts: for kv in opts['plot-unparam'].split(';'): @@ -242,12 +250,20 @@ if __name__ == '__main__': model.stats.generic_param_dependence_ratio(trans, 'rel_energy_prev'), model.stats.generic_param_dependence_ratio(trans, 'rel_energy_next'))) print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration'))) - static_quality = model.assess(static_model) + + if 'cross-validate' in opts: + static_quality = xv.montecarlo(lambda m: m.get_static()) + else: + static_quality = model.assess(static_model) if len(show_models): print('--- LUT ---') lut_model = model.get_param_lut() - lut_quality = model.assess(lut_model) + + if 'cross-validate' in opts: + lut_quality = xv.montecarlo(lambda m: m.get_param_lut()) + else: + lut_quality = model.assess(lut_model) if len(show_models): print('--- param model ---') @@ -288,7 +304,11 @@ if __name__ == '__main__': if param_info(trans, attribute): print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str)) print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args)) - analytic_quality = model.assess(param_model) + + if 'cross-validate' in opts: + analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0]) + else: + analytic_quality = model.assess(param_model) if 'tex' in show_models or 'tex' in show_quality: print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality) diff --git a/bin/eval-outlier-removal.py b/bin/eval-outlier-removal.py index eafb0da..2bf8072 100755 --- a/bin/eval-outlier-removal.py +++ b/bin/eval-outlier-removal.py @@ -9,11 +9,11 @@ from dfatool import PTAModel, RawData, soft_cast_int, pta_trace_to_aggregate opts = {} def model_quality_table(result_lists, info_list): - for state_or_tran in result_lists[0]['by_dfa_component'].keys(): - for key in result_lists[0]['by_dfa_component'][state_or_tran].keys(): + for state_or_tran in result_lists[0]['by_name'].keys(): + for key in result_lists[0]['by_name'][state_or_tran].keys(): buf = '{:20s} {:15s}'.format(state_or_tran, key) for i, results in enumerate(result_lists): - results = results['by_dfa_component'] + results = results['by_name'] info = info_list[i] buf += ' ||| ' if info == None or info(state_or_tran, key): @@ -27,12 +27,12 @@ def model_quality_table(result_lists, info_list): print(buf) def combo_model_quality_table(result_lists, info_list): - for state_or_tran in result_lists[0][0]['by_dfa_component'].keys(): - for key in result_lists[0][0]['by_dfa_component'][state_or_tran].keys(): + for state_or_tran in result_lists[0][0]['by_name'].keys(): + for key in result_lists[0][0]['by_name'][state_or_tran].keys(): for sub_result_lists in result_lists: buf = '{:20s} {:15s}'.format(state_or_tran, key) for i, results in enumerate(sub_result_lists): - results = results['by_dfa_component'] + results = results['by_name'] info = info_list[i] buf += ' ||| ' if info == None or info(state_or_tran, key): diff --git a/bin/eval-rel-energy.py b/bin/eval-rel-energy.py index ea7a226..123fe9f 100755 --- a/bin/eval-rel-energy.py +++ b/bin/eval-rel-energy.py @@ -84,8 +84,8 @@ if __name__ == '__main__': lut_quality = model.assess(model.get_param_lut()) for trans in model.transitions(): - absolute_quality = lut_quality['by_dfa_component'][trans]['energy'] - relative_quality = lut_quality['by_dfa_component'][trans]['rel_energy_prev'] + absolute_quality = lut_quality['by_name'][trans]['energy'] + relative_quality = lut_quality['by_name'][trans]['rel_energy_prev'] if absolute_quality['mae'] < relative_quality['mae']: best = 'absolute' score_absolute += 1 diff --git a/lib/data_parameters.py b/lib/data_parameters.py index 611a191..406d0a5 100644 --- a/lib/data_parameters.py +++ b/lib/data_parameters.py @@ -20,6 +20,8 @@ def _string_value_length(json): return 0 +# TODO distinguish between int and uint, which is not visible from the +# data value alone def _int_value_length(json): if type(json) == int: if json < 256: diff --git a/lib/dfatool.py b/lib/dfatool.py index 4b2ccb1..82ed35f 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -255,31 +255,139 @@ def _xv_partitions_kfold(length, num_slices): pairs.append((training, validation)) return pairs -def _xv_partitions_montecarlo(length, num_slices): - pairs = [] - for i in range(0, num_slices): - shuffled = np.random.permutation(np.arange(length)) - border = int(length * float(2) / 3) - training = shuffled[:border] - validation = shuffled[border:] - pairs.append((training, validation)) - return pairs +def _xv_partition_montecarlo(length): + shuffled = np.random.permutation(np.arange(length)) + border = int(length * float(2) / 3) + training = shuffled[:border] + validation = shuffled[border:] + return (training, validation) class CrossValidator: + """ + Cross-Validation helper for model generation. - def __init__(self, by_name, by_param, parameters): - """Create a new AnalyticModel and compute parameter statistics.""" - self.by_name = np.array(by_name) - self.by_param = np.array(by_param) + Given a set of measurements and a model class, it will partition the + data into training and validation sets, train the model on the training + set, and assess its quality on the validation set. This is repeated + several times depending on cross-validation algorithm and configuration. + Reports the mean model error over all cross-validation runs. + """ + + def __init__(self, model_class, by_name, parameters, arg_count): + """ + Create a new CrossValidator object. + + Does not perform cross-validation yet. + + arguments: + model_class -- model class/type used for model synthesis, + e.g. PTAModel or AnalyticModel. model_class must have a + constructor accepting (by_name, parameters, arg_count, verbose = False) + and provide an assess method. + by_name -- measurements aggregated by state/transition/function/... name. + Layout: by_name[name][attribute] = list of data. Additionally, + by_name[name]['attributes'] must be set to the list of attributes, + e.g. ['power'] or ['duration', 'energy']. + """ + self.model_class = model_class + self.by_name = by_name self.names = sorted(by_name.keys()) self.parameters = sorted(parameters) + self.arg_count = arg_count + + def montecarlo(self, model_getter, count = 2): + """ + Perform Monte Carlo cross-validation and return average model quality. - def montecarlo(self, count = 200): - for pair in _xv_partitions_montecarlo(count): - by_name_training = dict() - by_name_validation = dict() - by_param_training = dict() - by_param_validation = dict() + The by_name data is randomly divided into 2/3 training and 1/3 + validation. After creating a model for the training set, the + model type returned by model_getter is evaluated on the validation set. + This is repeated count times (defaulting to 200); the average of all + measures is returned to the user. + + arguments: + model_getter -- function with signature (model_object) -> model, + e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware + model with automatic parameter detection. + count -- number of validation runs to perform, defaults to 200 + + return value: + dict of model quality measures. + { + 'by_name' : { + for each name: { + for each attribute: { + 'mae' : mean of all mean absolute errors + 'mae_list' : list of the individual MAE values encountered during cross-validation + 'smape' : mean of all symmetric mean absolute percentage errors + 'smape_list' : list of the individual SMAPE values encountered during cross-validation + } + } + } + } + """ + ret = { + 'by_name' : dict() + } + + for name in self.names: + ret['by_name'][name] = dict() + for attribute in self.by_name[name]['attributes']: + ret['by_name'][name][attribute] = { + 'mae_list': list(), + 'smape_list': list() + } + + for i in range(count): + res = self._single_montecarlo(model_getter) + for name in self.names: + for attribute in self.by_name[name]['attributes']: + ret['by_name'][name][attribute]['mae_list'].append(res['by_name'][name][attribute]['mae']) + ret['by_name'][name][attribute]['smape_list'].append(res['by_name'][name][attribute]['smape']) + + for name in self.names: + for attribute in self.by_name[name]['attributes']: + ret['by_name'][name][attribute]['mae'] = np.mean(ret['by_name'][name][attribute]['mae_list']) + ret['by_name'][name][attribute]['smape'] = np.mean(ret['by_name'][name][attribute]['smape_list']) + + return ret + + def _single_montecarlo(self, model_getter): + training = dict() + validation = dict() + for name in self.names: + training[name] = { + 'attributes' : self.by_name[name]['attributes'] + } + validation[name] = { + 'attributes' : self.by_name[name]['attributes'] + } + + if 'isa' in self.by_name[name]: + training[name]['isa'] = self.by_name[name]['isa'] + validation[name]['isa'] = self.by_name[name]['isa'] + + data_count = len(self.by_name[name]['param']) + training_subset, validation_subset = _xv_partition_montecarlo(data_count) + + for attribute in self.by_name[name]['attributes']: + self.by_name[name][attribute] = np.array(self.by_name[name][attribute]) + training[name][attribute] = self.by_name[name][attribute][training_subset] + validation[name][attribute] = self.by_name[name][attribute][validation_subset] + + # We can't use slice syntax for 'param', which may contain strings and other odd values + training[name]['param'] = list() + validation[name]['param'] = list() + for idx in training_subset: + training[name]['param'].append(self.by_name[name]['param'][idx]) + for idx in validation_subset: + validation[name]['param'].append(self.by_name[name]['param'][idx]) + + training_data = self.model_class(training, self.parameters, self.arg_count, verbose = False) + training_model = model_getter(training_data) + validation_data = self.model_class(validation, self.parameters, self.arg_count, verbose = False) + + return validation_data.assess(training_model) def _preprocess_measurement(measurement): @@ -1011,7 +1119,9 @@ class AnalyticModel: measures = regression_measures(predicted_data, elem[attribute]) detailed_results[name][attribute] = measures - return detailed_results + return { + 'by_name' : detailed_results, + } def _add_trace_data_to_aggregate(aggregate, key, element): @@ -1277,11 +1387,14 @@ class PTAModel: The function can only give model values for parameter combinations present in by_param. It raises KeyError for other values. """ + static_model = self._get_model_from_dict(self.by_name, np.median) lut_model = self._get_model_from_dict(self.by_param, np.median) def lut_median_getter(name, key, param, arg = [], **kwargs): param.extend(map(soft_cast_int, arg)) - return lut_model[(name, tuple(param))][key] + if (name, tuple(param)) in lut_model: + return lut_model[(name, tuple(param))][key] + return static_model[name][key] return lut_median_getter @@ -1488,7 +1601,7 @@ class PTAModel: if len(self.traces): return { - 'by_dfa_component' : detailed_results, + 'by_name' : detailed_results, 'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)), 'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)), 'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)), @@ -1496,7 +1609,7 @@ class PTAModel: 'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)), } return { - 'by_dfa_component' : detailed_results + 'by_name' : detailed_results } |