summaryrefslogtreecommitdiff
path: root/bin/Proof_Of_Concept_PELT.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/Proof_Of_Concept_PELT.py')
-rw-r--r--bin/Proof_Of_Concept_PELT.py39
1 files changed, 19 insertions, 20 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index 0d5be54..7726f53 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -160,11 +160,11 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
knee = find_knee_point(pen_val, fitted_bkps_val, S=S)
# TODO: Find plateau on pen_val vs fitted_bkps_val
- # scipy.find_peaks() does not find plateaus if they extend through the end of the data.
- # to counter that, add one extremely large value to the right side of the data
- # after negating it is extremely small -> Almost certainly smaller than the
- # found plateau therefore the plateau does not extend through the border -> scipy.find_peaks
- # finds it. Choose value from within that plateau.
+ # scipy.find_peaks() does not find plateaus if they extend through the end of the data.
+ # to counter that, add one extremely large value to the right side of the data
+ # after negating it is extremely small -> Almost certainly smaller than the
+ # found plateau therefore the plateau does not extend through the border
+ # -> scipy.find_peaks finds it. Choose value from within that plateau.
# fitted_bkps_val.append(100000000)
# TODO: Approaching over find_peaks might not work if the initial decrease step to the
# "correct" number of changepoints and additional decrease steps e.g. underfitting
@@ -331,7 +331,6 @@ def calc_raw_states(arg_list, num_processes=8):
# Very short benchmark yielded approx. 3 times the speed of solution not using sort
-# TODO: Decide whether median is really the better baseline than mean
def needs_refinement(signal, thresh):
sorted_signal = sorted(signal)
length_of_signal = len(signal)
@@ -509,29 +508,28 @@ if __name__ == '__main__':
configurations = json.load(f)
# loop through all traces check if refinement is necessary
resulting_sequence_list = []
- for num_config, measurements_by_configuration in enumerate(configurations):
+ for num_config, measurements_by_config in enumerate(configurations):
# loop through all occurrences of the looked at state
- print_info("Looking at state '" + measurements_by_configuration['name'] + "' with params: "
- + str(measurements_by_configuration['parameter']))
+ print_info("Looking at state '" + measurements_by_config['name'] + "' with params: "
+ + str(measurements_by_config['parameter']))
refine = False
print_info("Checking if refinement is necessary...")
- for measurement in measurements_by_configuration['offline']:
+ for measurement in measurements_by_config['offline']:
# loop through measurements of particular state
# an check if state needs refinement
signal = measurement['uW']
# mean = measurement['uW_mean']
- # TODO: Decide if median is really the better baseline than mean
if needs_refinement(signal, opt_refinement_thresh) and not refine:
print_info("Refinement is necessary!")
refine = True
if not refine:
- print_info("No refinement necessary for state '" + measurements_by_configuration['name']
- + "' with params: " + str(measurements_by_configuration['parameter']))
+ print_info("No refinement necessary for state '" + measurements_by_config['name']
+ + "' with params: " + str(measurements_by_config['parameter']))
else:
# assume that all measurements of the same param configuration are fundamentally
# similar -> calculate penalty for first measurement, use it for all
if opt_pen_override is None:
- signal = np.array(measurements_by_configuration['offline'][0]['uW'])
+ signal = np.array(measurements_by_config['offline'][0]['uW'])
normed_signal = norm_signal(signal)
penalty = calculate_penalty_value(normed_signal, model=opt_model,
range_min=opt_range_min,
@@ -545,11 +543,11 @@ if __name__ == '__main__':
# build arguments for parallel excecution
print_info("Starting raw_states calculation.")
raw_states_calc_args = []
- for num_measurement, measurement in enumerate(measurements_by_configuration['offline']):
+ for num_measurement, measurement in enumerate(measurements_by_config['offline']):
raw_states_calc_args.append((num_measurement, measurement, penalty,
opt_model, opt_jump))
- raw_states_list = [None] * len(measurements_by_configuration['offline'])
+ raw_states_list = [None] * len(measurements_by_config['offline'])
raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
# extracting result and putting it in correct order -> index of raw_states_list
# entry still corresponds with index of measurement in measurements_by_states
@@ -622,8 +620,6 @@ if __name__ == '__main__':
# print_info("Cluster labels:\n" + str(cluster.labels_))
# plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow')
# plt.show()
- # TODO: Problem: Der Algorithmus nummeriert die Zustände nicht immer gleich... also bspw.:
- # mal ist das tatsächliche Transmit mit 1 belabelt und mal mit 3
cluster_labels_list.append((num_trace, cluster.labels_))
num_cluster_list.append((num_trace, cluster.n_clusters_))
i = i + 1
@@ -739,7 +735,7 @@ if __name__ == '__main__':
print_info("Confidence of resulting sequence is " + str(confidence)
+ " while using " + str(num_used_measurements) + "/"
+ str(len(raw_states_list)) + " measurements.")
- print(resulting_sequence)
+ #print(resulting_sequence)
resulting_sequence_list.append((num_config, resulting_sequence))
# TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat
# erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die
@@ -750,7 +746,10 @@ if __name__ == '__main__':
# wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche
# Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme,
# 2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines
- # Zustands ja nicht mehr ändern.
+ # Zustands ja nicht mehr ändern. Kann sicherlich immernoch Falschclustering erzeugen...
+ for num_config, sequence in resulting_sequence_list:
+ print_info("NO. config:" + str(num_config))
+ print_info(sequence)
elif ".tar" in opt_filename:
# open with dfatool