summaryrefslogtreecommitdiff
path: root/bin/analyze-archive.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/analyze-archive.py')
-rwxr-xr-xbin/analyze-archive.py17
1 files changed, 16 insertions, 1 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index e04f3fe..a4af02a 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -61,6 +61,12 @@ Options:
also defined for cases such as safe_inv(0) or safe_sqrt(-1). This allows
a greater range of functions to be tried during fitting.
+--filter-param=<parameter name>=<parameter value>[,<parameter name>=<parameter value>...]
+ Only consider measurements where <parameter name> is <parameter value>
+ All other measurements (including those where it is None, that is, has
+ not been set yet) are discarded. Note that this may remove entire
+ function calls from the model.
+
--hwmodel=<hwmodel.json>
Load DFA hardware model from JSON
@@ -73,7 +79,7 @@ import json
import plotter
import re
import sys
-from dfatool import PTAModel, RawData, pta_trace_to_aggregate
+from dfatool import PTAModel, RawData, pta_trace_to_aggregate, filter_aggregate_by_param
from dfatool import soft_cast_int, is_numeric, gplearn_to_function
from dfatool import CrossValidator
@@ -210,6 +216,7 @@ if __name__ == '__main__':
optspec = (
'plot-unparam= plot-param= show-models= show-quality= '
'ignored-trace-indexes= discard-outliers= function-override= '
+ 'filter-param= '
'cross-validate= '
'with-safe-functions hwmodel= export-energymodel='
)
@@ -242,6 +249,11 @@ if __name__ == '__main__':
xv_method, xv_count = opts['cross-validate'].split(':')
xv_count = int(xv_count)
+ if 'filter-param' in opts:
+ opts['filter-param'] = list(map(lambda x: x.split('='), opts['filter-param'].split(',')))
+ else:
+ opts['filter-param'] = list()
+
if 'with-safe-functions' in opts:
safe_functions_enabled = True
@@ -257,6 +269,9 @@ if __name__ == '__main__':
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
+
+ filter_aggregate_by_param(by_name, parameters, opts['filter-param'])
+
model = PTAModel(by_name, parameters, arg_count,
traces = preprocessed_data,
discard_outliers = discard_outliers,