summaryrefslogtreecommitdiff
path: root/bin/analyze-timing.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-xbin/analyze-timing.py23
1 files changed, 21 insertions, 2 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index 659a3d7..6c84a67 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -21,6 +21,9 @@ Options:
parameters. Also plots the corresponding measurements.
If gplearn function is set, it is plotted using dashed lines.
+--param-info
+ Show parameter names and values
+
--show-models=<static|paramdetection|param|all|tex>
static: show static model values as well as parameter detection heuristic
paramdetection: show stddev of static/lut/fitted model
@@ -77,7 +80,8 @@ import re
import sys
from dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate
from dfatool import soft_cast_int, is_numeric, gplearn_to_function
-from dfatool import CrossValidator, filter_aggregate_by_param
+from dfatool import CrossValidator
+from utils import filter_aggregate_by_param
from parameters import prune_dependent_parameters
import utils
@@ -151,7 +155,7 @@ if __name__ == '__main__':
'ignored-trace-indexes= discard-outliers= function-override= '
'filter-param= '
'cross-validate= '
- 'corrcoef '
+ 'corrcoef param-info '
'with-safe-functions hwmodel= export-energymodel='
)
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
@@ -216,6 +220,12 @@ if __name__ == '__main__':
if xv_method:
xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
+ if 'param-info' in opts:
+ for state in model.names:
+ print('{}:'.format(state))
+ for param in model.parameters:
+ print(' {} = {}'.format(param, model.stats.distinct_values[state][param]))
+
if 'plot-unparam' in opts:
for kv in opts['plot-unparam'].split(';'):
state_or_trans, attribute, ylabel = kv.split(':')
@@ -228,6 +238,15 @@ if __name__ == '__main__':
if 'static' in show_models or 'all' in show_models:
for trans in model.names:
print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
+ for param in model.parameters:
+ print('{:10s} dependence on {:15s}: {:.2f}'.format(
+ '',
+ param,
+ model.stats.param_dependence_ratio(trans, 'duration', param)))
+ if model.stats.has_codependent_parameters(trans, 'duration', param):
+ print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(trans, 'duration', param))))
+ for param_dict in model.stats.codependent_parameter_value_dicts(trans, 'duration', param):
+ print('{:24s} parameter-aware for {}'.format('', param_dict))
if xv_method == 'montecarlo':
static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)