summaryrefslogtreecommitdiff
path: root/bin/analyze-timing.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-xbin/analyze-timing.py321
1 files changed, 321 insertions, 0 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
new file mode 100755
index 0000000..b0aaaca
--- /dev/null
+++ b/bin/analyze-timing.py
@@ -0,0 +1,321 @@
+#!/usr/bin/env python3
+"""
+analyze-timing -- generate analytic energy model from annotated OnboardTimerHarness traces.
+
+Usage:
+PYTHONPATH=lib bin/analyze-timing.py [options] <tracefiles ...>
+
+analyze-timing generates an analytic energy model (``AnalyticModel``)from one or more annotated
+traces generated by generate-dfa-benchmark using OnboardTimerHarness. By default, it does nothing else --
+use one of the --plot-* or --show-* options to examine the generated model.
+
+Options:
+--plot-unparam=<name>:<attribute>:<Y axis label>[;<name>:<attribute>:<label>;...]
+ Plot all mesurements for <name> <attribute> without regard for parameter values.
+ X axis is measurement number/id.
+
+--plot-param=<name> <attribute> <parameter> [gplearn function][;<name> <attribute> <parameter> [function];...]
+ Plot measurements for <name> <attribute> by <parameter>.
+ X axis is parameter value.
+ Plots the model function as one solid line for each combination of non-<parameter>
+ parameters. Also plots the corresponding measurements.
+ If gplearn function is set, it is plotted using dashed lines.
+
+--show-models=<static|paramdetection|param|all|tex>
+ static: show static model values as well as parameter detection heuristic
+ paramdetection: show stddev of static/lut/fitted model
+ param: show parameterized model functions and regression variable values
+ all: all of the above
+ tex: print tex/pgfplots-compatible model data on stdout
+
+--show-quality=<table|summary|all|tex>
+ table: show static/fitted/lut SMAPE and MAE for each name and attribute
+ summary: show static/fitted/lut SMAPE and MAE for each attribute, averaged over all states/transitions
+ all: all of the above
+ tex: print tex/pgfplots-compatible model quality data on stdout
+
+--ignored-trace-indexes=<i1,i2,...>
+ Specify traces which should be ignored due to bogus data. 1 is the first
+ trace, 2 the second, and so on.
+
+--cross-validate=<method>:<count>
+ Perform cross validation when computing model quality.
+ Only works with --show-quality=table at the moment.
+ If <method> is "montecarlo": Randomly divide data into 2/3 training and 1/3
+ validation, <count> times. Reported model quality is the average of all
+ validation runs. Data is partitioned without regard for parameter values,
+ so a specific parameter combination may be present in both training and
+ validation sets or just one of them.
+
+--function-override=<name attribute function>[;<name> <attribute> <function>;...]
+ Manually specify the function to fit for <name> <attribute>. A function
+ specified this way bypasses parameter detection: It is always assigned,
+ even if the model seems to be independent of the parameters it references.
+
+--with-safe-functions
+ If set, include "safe" functions (safe_log, safe_inv, safe_sqrt) which are
+ also defined for cases such as safe_inv(0) or safe_sqrt(-1). This allows
+ a greater range of functions to be tried during fitting.
+
+--hwmodel=<hwmodel.json>
+ Load DFA hardware model from JSON
+
+--export-energymodel=<model.json>
+ Export energy model. Requires --hwmodel.
+"""
+
+import getopt
+import json
+import plotter
+import re
+import sys
+from dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate
+from dfatool import soft_cast_int, is_numeric, gplearn_to_function
+from dfatool import CrossValidator
+
+opts = {}
+
+def print_model_quality(results):
+ for state_or_tran in results.keys():
+ print()
+ for key, result in results[state_or_tran].items():
+ if 'smape' in result:
+ print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
+ state_or_tran, key, result['smape'], result['mae']))
+ else:
+ print('{:20s} {:15s} {:.0f}'.format(
+ state_or_tran, key, result['mae']))
+
+def format_quality_measures(result):
+ if 'smape' in result:
+ return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
+ else:
+ return '{:6} {:9.0f}'.format('', result['mae'])
+
+def model_quality_table(result_lists, info_list):
+ for state_or_tran in result_lists[0]['by_name'].keys():
+ for key in result_lists[0]['by_name'][state_or_tran].keys():
+ buf = '{:20s} {:15s}'.format(state_or_tran, key)
+ for i, results in enumerate(result_lists):
+ info = info_list[i]
+ buf += ' ||| '
+ if info == None or info(state_or_tran, key):
+ result = results['by_name'][state_or_tran][key]
+ buf += format_quality_measures(result)
+ else:
+ buf += '{:6}----{:9}'.format('', '')
+ print(buf)
+
+def model_summary_table(result_list):
+ buf = 'transition duration'
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['duration_by_trace'])
+ print(buf)
+ buf = 'total energy '
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['energy_by_trace'])
+ print(buf)
+ buf = 'rel total energy '
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['rel_energy_by_trace'])
+ print(buf)
+ buf = 'state-only energy '
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['state_energy_by_trace'])
+ print(buf)
+ buf = 'transition timeout '
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['timeout_by_trace'])
+ print(buf)
+
+
+def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
+ print('')
+ print(r'key attribute $1 - \frac{\sigma_X}{...}$')
+ for state_or_tran in model.by_name.keys():
+ for attribute in model.attributes(state_or_tran):
+ print('{} {} {:.8f}'.format(state_or_tran, attribute, model.stats.generic_param_dependence_ratio(state_or_tran, attribute)))
+
+ print('')
+ print(r'key attribute parameter $1 - \frac{...}{...}$')
+ for state_or_tran in model.by_name.keys():
+ for attribute in model.attributes(state_or_tran):
+ for param in model.parameters():
+ print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.stats.param_dependence_ratio(state_or_tran, attribute, param)))
+ if state_or_tran in model._num_args:
+ for arg_index in range(model._num_args[state_or_tran]):
+ print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+
+if __name__ == '__main__':
+
+ ignored_trace_indexes = []
+ discard_outliers = None
+ safe_functions_enabled = False
+ function_override = {}
+ show_models = []
+ show_quality = []
+ hwmodel = None
+ energymodel_export_file = None
+ xv_method = None
+ xv_count = 10
+
+ try:
+ optspec = (
+ 'plot-unparam= plot-param= show-models= show-quality= '
+ 'ignored-trace-indexes= discard-outliers= function-override= '
+ 'cross-validate= '
+ 'with-safe-functions hwmodel= export-energymodel='
+ )
+ raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
+
+ for option, parameter in raw_opts:
+ optname = re.sub(r'^--', '', option)
+ opts[optname] = parameter
+
+ if 'ignored-trace-indexes' in opts:
+ ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
+ if 0 in ignored_trace_indexes:
+ print('[E] arguments to --ignored-trace-indexes start from 1')
+
+ if 'discard-outliers' in opts:
+ discard_outliers = float(opts['discard-outliers'])
+
+ if 'function-override' in opts:
+ for function_desc in opts['function-override'].split(';'):
+ state_or_tran, attribute, *function_str = function_desc.split(' ')
+ function_override[(state_or_tran, attribute)] = ' '.join(function_str)
+
+ if 'show-models' in opts:
+ show_models = opts['show-models'].split(',')
+
+ if 'show-quality' in opts:
+ show_quality = opts['show-quality'].split(',')
+
+ if 'cross-validate' in opts:
+ xv_method, xv_count = opts['cross-validate'].split(':')
+ xv_count = int(xv_count)
+
+ if 'with-safe-functions' in opts:
+ safe_functions_enabled = True
+
+ if 'hwmodel' in opts:
+ with open(opts['hwmodel'], 'r') as f:
+ hwmodel = json.load(f)
+
+ except getopt.GetoptError as err:
+ print(err)
+ sys.exit(2)
+
+ raw_data = TimingData(args)
+
+ preprocessed_data = raw_data.get_preprocessed_data()
+ by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
+ model = AnalyticModel(by_name, parameters)
+
+ if xv_method:
+ xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
+
+ if 'plot-unparam' in opts:
+ for kv in opts['plot-unparam'].split(';'):
+ state_or_trans, attribute, ylabel = kv.split(':')
+ fname = 'param_y_{}_{}.pdf'.format(state_or_trans,attribute)
+ plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel = 'measurement #', ylabel = ylabel, output = fname)
+
+ if len(show_models):
+ print('--- simple static model ---')
+ static_model = model.get_static()
+ if 'static' in show_models or 'all' in show_models:
+ for trans in model.names:
+ print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
+
+ if xv_method == 'montecarlo':
+ static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
+ else:
+ static_quality = model.assess(static_model)
+
+ if len(show_models):
+ print('--- LUT ---')
+ lut_model = model.get_param_lut()
+
+ if xv_method == 'montecarlo':
+ lut_quality = xv.montecarlo(lambda m: m.get_param_lut(fallback=True), xv_count)
+ else:
+ lut_quality = model.assess(lut_model)
+
+ if len(show_models):
+ print('--- param model ---')
+
+ param_model, param_info = model.get_fitted(safe_functions_enabled = safe_functions_enabled)
+
+ if 'paramdetection' in show_models or 'all' in show_models:
+ for transition in model.names:
+ for attribute in ['duration']:
+ info = param_info(transition, attribute)
+ print('{:10s} {:10s} non-param stddev {:f}'.format(
+ transition, attribute, model.stats.stats[transition][attribute]['std_static']
+ ))
+ print('{:10s} {:10s} param-lut stddev {:f}'.format(
+ transition, attribute, model.stats.stats[transition][attribute]['std_param_lut']
+ ))
+ for param in sorted(model.stats.stats[transition][attribute]['std_by_param'].keys()):
+ print('{:10s} {:10s} {:10s} stddev {:f}'.format(
+ transition, attribute, param, model.stats.stats[transition][attribute]['std_by_param'][param]
+ ))
+ if info != None:
+ for param_name in sorted(info['fit_result'].keys(), key=str):
+ param_fit = info['fit_result'][param_name]['results']
+ for function_type in sorted(param_fit.keys()):
+ function_rmsd = param_fit[function_type]['rmsd']
+ print('{:10s} {:10s} {:10s} mean {:10s} RMSD {:.0f}'.format(
+ transition, attribute, str(param_name), function_type, function_rmsd
+ ))
+
+ if 'param' in show_models or 'all' in show_models:
+ for trans in model.names:
+ for attribute in ['duration']:
+ if param_info(trans, attribute):
+ print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str))
+ print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args))
+
+ if xv_method == 'montecarlo':
+ analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
+ else:
+ analytic_quality = model.assess(param_model)
+
+ if 'tex' in show_models or 'tex' in show_quality:
+ print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality)
+
+ if 'table' in show_quality or 'all' in show_quality:
+ model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
+ if 'summary' in show_quality or 'all' in show_quality:
+ model_summary_table([static_quality, analytic_quality, lut_quality])
+
+ if 'plot-param' in opts:
+ for kv in opts['plot-param'].split(';'):
+ state_or_trans, attribute, param_name, *function = kv.split(' ')
+ if len(function):
+ function = gplearn_to_function(' '.join(function))
+ else:
+ function = None
+ plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
+
+ if 'export-energymodel' in opts:
+ if not hwmodel:
+ print('[E] --export-energymodel requires --hwmodel to be set')
+ sys.exit(1)
+ json_model = model.to_json()
+ with open(opts['export-energymodel'], 'w') as f:
+ json.dump(json_model, f, indent = 2, sort_keys = True)
+
+
+ sys.exit(0)