diff options
Diffstat (limited to 'bin/analyze.py')
-rwxr-xr-x | bin/analyze.py | 40 |
1 files changed, 0 insertions, 40 deletions
diff --git a/bin/analyze.py b/bin/analyze.py deleted file mode 100755 index 57803fe..0000000 --- a/bin/analyze.py +++ /dev/null @@ -1,40 +0,0 @@ -#!/usr/bin/env python3 - -import json -import numpy as np -import os -from scipy.cluster.vq import kmeans2 -import struct -import sys -import tarfile -from dfatool import running_mean, MIMOSA - -voltage = float(sys.argv[1]) -shunt = float(sys.argv[2]) -filename = sys.argv[3] - -mim = MIMOSA(voltage, shunt) - -charges, triggers = mim.load_data(filename) -trigidx = mim.trigger_edges(triggers) -triggers = [] -cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10)) -calfunc, caldata = mim.calibration_function(charges, cal_edges) -vcalfunc = np.vectorize(calfunc, otypes=[np.float64]) - -json_out = { - 'triggers' : len(trigidx), - 'first_trig' : trigidx[0] * 10, - 'calibration' : caldata, - 'trace' : mim.analyze_states(charges, trigidx, vcalfunc) -} - -basename, _ = os.path.splitext(filename) - -# TODO also look for interesting gradients inside each state - -with open(basename + ".json", "w") as f: - json.dump(json_out, f) - f.close() - -#print(kmeans2(charges[:firstidx], np.array([130 * ua_step, 3.6 / 987 * 1000000, 3.6 / 99300 * 1000000]))) |