summaryrefslogtreecommitdiff
path: root/bin/eval-online-model-accuracy.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/eval-online-model-accuracy.py')
-rwxr-xr-xbin/eval-online-model-accuracy.py9
1 files changed, 4 insertions, 5 deletions
diff --git a/bin/eval-online-model-accuracy.py b/bin/eval-online-model-accuracy.py
index 8ddae65..75e2a51 100755
--- a/bin/eval-online-model-accuracy.py
+++ b/bin/eval-online-model-accuracy.py
@@ -110,11 +110,7 @@ if __name__ == '__main__':
modelfile = args[0]
- with open(modelfile, 'r') as f:
- if '.json' in modelfile:
- pta = PTA.from_json(json.load(f))
- else:
- pta = PTA.from_yaml(yaml.safe_load(f))
+ pta = PTA.from_file(modelfile)
enum = dict()
if '.json' not in modelfile:
@@ -165,12 +161,15 @@ if __name__ == '__main__':
base_weight += 8
return base_weight
+ #sys.exit(0)
+
mean_errors = list()
for timer_freq, timer_type, ts_type, power_type, energy_type in itertools.product(timer_freqs, timer_types, timestamp_types, power_types, energy_types):
real_energies = list()
real_durations = list()
model_energies = list()
# duration in µs
+ # Bei kurzer Dauer (z.B. nur [1e2]) performt auc uint32_t für Energie gut, sonst nicht so (weil overflow)
for sleep_duration in [1e2, 1e3, 1e4, 1e5, 1e6]:
runs = pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'], sleep = sleep_duration)
for run in runs: