summaryrefslogtreecommitdiff
path: root/bin/extract-speedup-from-log.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/extract-speedup-from-log.py')
-rwxr-xr-xbin/extract-speedup-from-log.py182
1 files changed, 182 insertions, 0 deletions
diff --git a/bin/extract-speedup-from-log.py b/bin/extract-speedup-from-log.py
new file mode 100755
index 0000000..87b8ba9
--- /dev/null
+++ b/bin/extract-speedup-from-log.py
@@ -0,0 +1,182 @@
+#!/usr/bin/env python3
+
+"""extract-speedup-from-log - Determine speedup from dfatool log files
+
+foo
+"""
+
+import argparse
+import dfatool.cli
+import dfatool.utils
+import logging
+import numpy as np
+from dfatool.loader import Logfile, CSVfile
+from dfatool.model import AnalyticModel
+from functools import reduce
+
+
+def parse_logfile(filename):
+ if ".csv" in filename:
+ loader = CSVfile()
+ else:
+ loader = Logfile()
+
+ if filename.endswith("xz"):
+ import lzma
+
+ with lzma.open(filename, "rt") as f:
+ return loader.load(f)
+ with open(filename, "r") as f:
+ return loader.load(f)
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
+ )
+ parser.add_argument(
+ "--filter-param",
+ metavar="<parameter name><condition>[;<parameter name><condition>...]",
+ type=str,
+ help="Only consider measurements where <parameter name> satisfies <condition>. "
+ "<condition> may be <operator><parameter value> with operator being < / <= / = / >= / >, "
+ "or ∈<parameter value>[,<parameter value>...]. "
+ "All other measurements (including those where it is None, that is, has not been set yet) are discarded. "
+ "Note that this may remove entire function calls from the model.",
+ )
+ parser.add_argument(
+ "--ignore-param",
+ metavar="<parameter name>[,<parameter name>,...]",
+ type=str,
+ help="Ignore listed parameters during model generation",
+ )
+ parser.add_argument(
+ "--log-level",
+ metavar="LEVEL",
+ choices=["debug", "info", "warning", "error"],
+ default="warning",
+ help="Set log level",
+ )
+ parser.add_argument(
+ "numerator",
+ type=str,
+ help="numerator parameters",
+ )
+ parser.add_argument(
+ "denominator",
+ type=str,
+ help="denominator parameters",
+ )
+ parser.add_argument(
+ "observation",
+ type=str,
+ help="observation (key:attribute) used for speedup calculation",
+ )
+ parser.add_argument(
+ "logfiles",
+ nargs="+",
+ type=str,
+ help="Path to benchmark output (.txt or .txt.xz)",
+ )
+ args = parser.parse_args()
+
+ if args.log_level:
+ numeric_level = getattr(logging, args.log_level.upper(), None)
+ if not isinstance(numeric_level, int):
+ print(f"Invalid log level: {args.log_level}", file=sys.stderr)
+ sys.exit(1)
+ logging.basicConfig(
+ level=numeric_level,
+ format="{asctime} {levelname}:{name}:{message}",
+ style="{",
+ )
+
+ observations = reduce(lambda a, b: a + b, map(parse_logfile, args.logfiles))
+ by_name_num, parameter_names_num = dfatool.utils.observations_to_by_name(
+ observations
+ )
+ by_name_denom, parameter_names_denom = dfatool.utils.observations_to_by_name(
+ observations
+ )
+ del observations
+
+ if args.filter_param:
+ args.filter_param = list(
+ map(
+ lambda entry: dfatool.cli.parse_filter_string(
+ entry, parameter_names=parameter_names_num
+ ),
+ args.filter_param.split(";"),
+ )
+ )
+ else:
+ args.filter_param = list()
+
+ filter_num = list(
+ map(
+ lambda entry: dfatool.cli.parse_filter_string(
+ entry, parameter_names=parameter_names_num
+ ),
+ args.numerator.split(";"),
+ )
+ )
+
+ filter_denom = list(
+ map(
+ lambda entry: dfatool.cli.parse_filter_string(
+ entry, parameter_names=parameter_names_denom
+ ),
+ args.denominator.split(";"),
+ )
+ )
+
+ filter_num += args.filter_param
+ filter_denom += args.filter_param
+
+ ignore_num = list(map(lambda x: x[0], filter_num))
+ ignore_denom = list(map(lambda x: x[0], filter_denom))
+ assert ignore_num == ignore_denom
+
+ if args.ignore_param:
+ args.ignore_param = args.ignore_param.split(";")
+ ignore_num += args.ignore_param
+ ignore_denom += args.ignore_param
+
+ dfatool.utils.filter_aggregate_by_param(
+ by_name_num, parameter_names_num, filter_num
+ )
+ dfatool.utils.filter_aggregate_by_param(
+ by_name_denom, parameter_names_denom, filter_denom
+ )
+ dfatool.utils.ignore_param(by_name_num, parameter_names_num, ignore_num)
+ dfatool.utils.ignore_param(by_name_denom, parameter_names_denom, ignore_denom)
+
+ model_num = AnalyticModel(
+ by_name_num,
+ parameter_names_num,
+ compute_stats=False,
+ )
+
+ model_denom = AnalyticModel(
+ by_name_denom,
+ parameter_names_denom,
+ compute_stats=False,
+ )
+
+ for param_key in model_num.get_by_param().keys():
+ name, params = param_key
+ num_data = model_num.get_by_param().get(param_key).get(args.observation)
+ denom_data = model_denom.get_by_param().get(param_key).get(args.observation)
+ if num_data and denom_data:
+ param_str = " ".join(
+ map(
+ lambda i: f"{parameter_names_num[i]}={params[i]}",
+ range(len(params)),
+ )
+ )
+ for speedup in np.array(num_data) / np.array(denom_data):
+ print(f"[::] {name} | {param_str} | speedup={speedup}")
+
+
+if __name__ == "__main__":
+ main()