diff options
Diffstat (limited to 'bin/mim-vs-keysight.py')
-rwxr-xr-x | bin/mim-vs-keysight.py | 225 |
1 files changed, 225 insertions, 0 deletions
diff --git a/bin/mim-vs-keysight.py b/bin/mim-vs-keysight.py new file mode 100755 index 0000000..2cfa976 --- /dev/null +++ b/bin/mim-vs-keysight.py @@ -0,0 +1,225 @@ +#!/usr/bin/env python3 + +import csv +import numpy as np +import os +import struct +import sys +import tarfile +import matplotlib.pyplot as plt +from dfatool import running_mean, MIMOSA, Keysight + +voltage = float(sys.argv[1]) +shunt = float(sys.argv[2]) + +mimfile = "../data/20161114_arb_%d.mim" % shunt +csvfile = "../data/20161114_%d_arb.csv" % shunt + +mim = MIMOSA(voltage, shunt) +ks = Keysight() + +charges, triggers = mim.load_data(mimfile) +timestamps, currents = ks.load_data(csvfile) + +def calfunc330(charge): + if charge < 140.210488888889: + return 0 + if charge <= 526.507377777778: + return float(charge) * 0.0941215500652876 + -13.196828549634 + else: + return float(charge) * 0.0897304193584184 + -47.2437278033012 + 36.358862 + +def calfunc82(charge): + if charge < 126.993600: + return 0 + if charge <= 245.464889: + return charge * 0.306900 + -38.974361 + else: + return charge * 0.356383 + -87.479495 + 36.358862 + + +def calfunc33(charge): + if charge < 127.000000: + return 0 + if charge <= 127.211911: + return charge * 171.576006 + -21790.152700 + else: + return charge * 0.884357 + -112.500777 + 36.358862 + +calfuncs = { + 33 : calfunc33, + 82 : calfunc82, + 330 : calfunc330, +} + +vcalfunc = np.vectorize(calfuncs[int(shunt)], otypes=[np.float64]) + +#plt.plot(np.arange(0, 1000, 0.01), vcalfunc(np.arange(0, 1000, 0.01))) +#plt.xlabel('Rohdatenwert') +#plt.ylabel('Strom [µA]') +#plt.show() +#sys.exit(0) + +mim_x = np.arange(len(charges)-199) * 1e-5 +mim_y = running_mean(mim.charge_to_current_nocal(charges), 200) * 1e-6 +cal_y = running_mean(vcalfunc(charges), 200) * 1e-6 +ks_x = timestamps[:len(timestamps)-9] +ks_y = running_mean(currents, 10) + +# look for synchronization opportunity in first 5 seconds +mim_sync_idx = 0 +ks_sync_idx = 0 +for i in range(0, 500000): + if mim_sync_idx == 0 and mim_y[i] > 0.001: + mim_sync_idx = i + if ks_sync_idx == 0 and ks_y[i] > 0.001: + ks_sync_idx = i + +mim_x = mim_x - mim_x[mim_sync_idx] +ks_x = ks_x - ks_x[ks_sync_idx] + +mim_max_start = int(len(mim_y) * 0.4) +mim_max_end = int(len(mim_y) * 0.6) +mim_start_end = int(len(mim_y) * 0.1) +mim_end_start = int(len(mim_y) * 0.9) +mim_max = np.max(mim_y[mim_max_start:mim_max_end]) +mim_min1 = np.min(mim_y[:mim_start_end]) +mim_min2 = np.min(mim_y[mim_end_start:]) +mim_center = 0 +mim_start = 0 +mim_end = 0 +for i, y in enumerate(mim_y): + if y == mim_max and i / len(mim_y) > 0.4 and i / len(mim_y) < 0.6: + mim_center = i + elif y == mim_min1 and i / len(mim_y) < 0.1: + mim_start = i + elif y == mim_min2 and i / len(mim_y) > 0.9: + mim_end = i + +plt.plot([mim_x[mim_center]], [mim_y[mim_center]], "yo") +plt.plot([mim_x[mim_start]], [mim_y[mim_start]], "yo") +plt.plot([mim_x[mim_end]], [mim_y[mim_end]], "yo") +# +mimhandle, = plt.plot(mim_x, mim_y, "r-", label='MIMOSA') +#calhandle, = plt.plot(mim_x, cal_y, "g-", label='MIMOSA (autocal)') +kshandle, = plt.plot(ks_x, ks_y, "b-", label='Keysight') +#plt.legend(handles=[mimhandle, calhandle, kshandle]) +plt.xlabel('Zeit [s]') +plt.ylabel('Strom [A]') +plt.grid(True) + +ks_steps_up = [] +ks_steps_down = [] +mim_steps_up = [] +mim_steps_down = [] + +skip = 0 +for i, gradient in enumerate(np.gradient(ks_y, 10000)): + if gradient > 0.5e-9 and i - skip > 200 and ks_x[i] < mim_x[mim_center] and ks_x[i] > 5: + plt.plot([ks_x[i]], [ks_y[i]], "go") + ks_steps_up.append(i) + skip = i + elif gradient < -0.5e-9 and i - skip > 200 and ks_x[i] > mim_x[mim_center] and ks_x[i] < mim_x[mim_end]: + plt.plot([ks_x[i]], [ks_y[i]], "g*") + ks_steps_down.append(i) + skip = i + +j = 0 +for i, ts in enumerate(mim_x): + if j < len(ks_steps_up) and ts > ks_x[ks_steps_up[j]]: + mim_steps_up.append(i) + j += 1 + +j = 0 +for i, ts in enumerate(mim_x): + if j < len(ks_steps_down) and ts > ks_x[ks_steps_down[j]]: + mim_steps_down.append(i) + j += 1 + +print(ks_steps_up) +print(mim_steps_up) + +mim_values = [] +cal_values = [] +ks_values = [] + +for i in range(1, len(ks_steps_up)): + mim_values.append(np.mean(mim_y[mim_steps_up[i-1]:mim_steps_up[i]])) + cal_values.append(np.mean(cal_y[mim_steps_up[i-1]:mim_steps_up[i]])) + ks_values.append(np.mean(ks_y[ks_steps_up[i-1]:ks_steps_up[i]])) + print("step %d avg %5.3f vs %5.3f vs %5.3f mA" % + (i, np.mean(ks_y[ks_steps_up[i-1]:ks_steps_up[i]]) * 1e3, + np.mean(mim_y[mim_steps_up[i-1]:mim_steps_up[i]]) * 1e3, + np.mean(cal_y[mim_steps_up[i-1]:mim_steps_up[i]]) * 1e3)) +for i in range(1, len(ks_steps_down)): + mim_values.append(np.mean(mim_y[mim_steps_down[i-1]:mim_steps_down[i]])) + cal_values.append(np.mean(cal_y[mim_steps_down[i-1]:mim_steps_down[i]])) + ks_values.append(np.mean(ks_y[ks_steps_down[i-1]:ks_steps_down[i]])) + print("step %d avg %5.3f vs %5.3f vs %5.3f mA" % + (i, np.mean(ks_y[ks_steps_down[i-1]:ks_steps_down[i]]) * 1e3, + np.mean(mim_y[mim_steps_down[i-1]:mim_steps_down[i]]) * 1e3, + np.mean(cal_y[mim_steps_down[i-1]:mim_steps_down[i]]) * 1e3)) + +mim_values = np.array(mim_values) +cal_values = np.array(cal_values) +ks_values = np.array(ks_values) + +plt.show() + +plt.hist(ks_y[ks_steps_up[48]:ks_steps_up[49]] * 1e3, 100, normed=0, facecolor='blue', alpha=0.8) +plt.xlabel('mA Keysight') +plt.ylabel('#') +plt.grid(True) +plt.show() +plt.hist(mim_y[mim_steps_up[48]:mim_steps_up[49]] * 1e3, 100, normed=0, facecolor='blue', alpha=0.8) +plt.xlabel('mA MimosaGUI') +plt.ylabel('#') +plt.grid(True) +plt.show() + +mimhandle, = plt.plot(ks_values * 1e3, mim_values * 1e3, "ro", label='Unkalibriert', markersize=4) +calhandle, = plt.plot(ks_values * 1e3, cal_values * 1e3, "bs", label='Kalibriert', markersize=4) +plt.legend(handles=[mimhandle, calhandle]) +plt.xlabel('mA Keysight') +plt.ylabel('mA MIMOSA') +plt.grid(True) +plt.show() + +mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) * 1e3, "ro", label='Unkalibriert', markersize=4) +calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) * 1e3, "bs", label='Kalibriert', markersize=4) +plt.legend(handles=[mimhandle, calhandle]) +plt.xlabel('Sollstrom [mA]') +plt.ylabel('Messfehler MIMOSA [mA]') +plt.grid(True) +plt.show() + +mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) * 1e3, "r--", label='Unkalibriert') +calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) * 1e3, "b-", label='Kalibriert') +plt.legend(handles=[mimhandle, calhandle]) +plt.xlabel('Sollstrom [mA]') +plt.ylabel('Messfehler MIMOSA [mA]') +plt.grid(True) +plt.show() + +mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) / ks_values * 100, "ro", label='Unkalibriert', markersize=4) +calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) / ks_values * 100, "bs", label='Kalibriert', markersize=4) +plt.legend(handles=[mimhandle, calhandle]) +plt.xlabel('Sollstrom [mA]') +plt.ylabel('Messfehler MIMOSA [%]') +plt.grid(True) +plt.show() + +mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) / ks_values * 100, "r--", label='Unkalibriert') +calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) / ks_values * 100, "b-", label='Kalibriert') +plt.legend(handles=[mimhandle, calhandle]) +plt.xlabel('Sollstrom [mA]') +plt.ylabel('Messfehler MIMOSA [%]') +plt.grid(True) +plt.show() + +#mimhandle, = plt.plot(mim_x, np.gradient(mim_y, 10000), "r-", label='MIMOSA') +#kshandle, = plt.plot(ks_x, np.gradient(ks_y, 10000), "b-", label='Keysight') +#plt.legend(handles=[mimhandle, kshandle]) +#plt.xlabel('Zeit [s]') +#plt.ylabel('Strom [A]') +#plt.show() |