summaryrefslogtreecommitdiff
path: root/bin/test_corrcoef.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/test_corrcoef.py')
-rwxr-xr-xbin/test_corrcoef.py235
1 files changed, 235 insertions, 0 deletions
diff --git a/bin/test_corrcoef.py b/bin/test_corrcoef.py
new file mode 100755
index 0000000..593eb51
--- /dev/null
+++ b/bin/test_corrcoef.py
@@ -0,0 +1,235 @@
+#!/usr/bin/env python3
+
+import getopt
+import plotter
+import re
+import sys
+from dfatool import PTAModel, RawData, pta_trace_to_aggregate
+from dfatool import soft_cast_int, is_numeric, gplearn_to_function
+
+opts = {}
+
+def print_model_quality(results):
+ for state_or_tran in results.keys():
+ print()
+ for key, result in results[state_or_tran].items():
+ if 'smape' in result:
+ print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
+ state_or_tran, key, result['smape'], result['mae']))
+ else:
+ print('{:20s} {:15s} {:.0f}'.format(
+ state_or_tran, key, result['mae']))
+
+def format_quality_measures(result):
+ if 'smape' in result:
+ return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
+ else:
+ return '{:6} {:9.0f}'.format('', result['mae'])
+
+def model_quality_table(result_lists, info_list):
+ for state_or_tran in result_lists[0]['by_name'].keys():
+ for key in result_lists[0]['by_name'][state_or_tran].keys():
+ buf = '{:20s} {:15s}'.format(state_or_tran, key)
+ for i, results in enumerate(result_lists):
+ info = info_list[i]
+ buf += ' ||| '
+ if info == None or info(state_or_tran, key):
+ result = results['by_name'][state_or_tran][key]
+ buf += format_quality_measures(result)
+ else:
+ buf += '{:6}----{:9}'.format('', '')
+ print(buf)
+
+def model_summary_table(result_list):
+ buf = 'transition duration'
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['duration_by_trace'])
+ print(buf)
+ buf = 'total energy '
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['energy_by_trace'])
+ print(buf)
+ buf = 'transition timeout '
+ for results in result_list:
+ if len(buf):
+ buf += ' ||| '
+ buf += format_quality_measures(results['timeout_by_trace'])
+ print(buf)
+
+
+def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
+ print('')
+ print(r'key attribute $1 - \frac{\sigma_X}{...}$')
+ for state_or_tran in model.by_name.keys():
+ for attribute in model.by_name[state_or_tran]['attributes']:
+ print('{} {} {:.8f}'.format(state_or_tran, attribute, model.generic_param_dependence_ratio(state_or_tran, attribute)))
+
+ print('')
+ print(r'key attribute parameter $1 - \frac{...}{...}$')
+ for state_or_tran in model.by_name.keys():
+ for attribute in model.by_name[state_or_tran]['attributes']:
+ for param in model.parameters():
+ print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.param_dependence_ratio(state_or_tran, attribute, param)))
+ if state_or_tran in model._num_args:
+ for arg_index in range(model._num_args[state_or_tran]):
+ print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+
+if __name__ == '__main__':
+
+ ignored_trace_indexes = None
+ discard_outliers = None
+ safe_functions_enabled = False
+ function_override = {}
+ show_models = []
+ show_quality = []
+
+ try:
+ optspec = (
+ 'plot-unparam= plot-param= show-models= show-quality= '
+ 'ignored-trace-indexes= discard-outliers= function-override= '
+ 'with-safe-functions'
+ )
+ raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
+
+ for option, parameter in raw_opts:
+ optname = re.sub(r'^--', '', option)
+ opts[optname] = parameter
+
+ if 'ignored-trace-indexes' in opts:
+ ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
+ if 0 in ignored_trace_indexes:
+ print('[E] arguments to --ignored-trace-indexes start from 1')
+
+ if 'discard-outliers' in opts:
+ discard_outliers = float(opts['discard-outliers'])
+
+ if 'function-override' in opts:
+ for function_desc in opts['function-override'].split(';'):
+ state_or_tran, attribute, *function_str = function_desc.split(' ')
+ function_override[(state_or_tran, attribute)] = ' '.join(function_str)
+
+ if 'show-models' in opts:
+ show_models = opts['show-models'].split(',')
+
+ if 'show-quality' in opts:
+ show_quality = opts['show-quality'].split(',')
+
+ if 'with-safe-functions' in opts:
+ safe_functions_enabled = True
+
+ except getopt.GetoptError as err:
+ print(err)
+ sys.exit(2)
+
+ raw_data = RawData(args)
+
+ preprocessed_data = raw_data.get_preprocessed_data()
+ by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
+
+ ref_model = PTAModel(
+ by_name, parameters, arg_count,
+ traces = preprocessed_data,
+ ignore_trace_indexes = ignored_trace_indexes,
+ discard_outliers = discard_outliers,
+ function_override = function_override,
+ use_corrcoef = False)
+ model = PTAModel(
+ by_name, parameters, arg_count,
+ traces = preprocessed_data,
+ ignore_trace_indexes = ignored_trace_indexes,
+ discard_outliers = discard_outliers,
+ function_override = function_override,
+ use_corrcoef = True)
+
+
+ if 'plot-unparam' in opts:
+ for kv in opts['plot-unparam'].split(';'):
+ state_or_trans, attribute = kv.split(' ')
+ plotter.plot_y(model.by_name[state_or_trans][attribute])
+
+ if len(show_models):
+ print('--- simple static model ---')
+ static_model = model.get_static()
+ ref_static_model = ref_model.get_static()
+ if 'static' in show_models or 'all' in show_models:
+ for state in model.states():
+ print('{:10s}: {:.0f} µW ({:.2f})'.format(
+ state,
+ static_model(state, 'power'),
+ model.generic_param_dependence_ratio(state, 'power')))
+ for param in model.parameters():
+ print('{:10s} dependence on {:15s}: {:.2f}'.format(
+ '',
+ param,
+ model.param_dependence_ratio(state, 'power', param)))
+ for trans in model.transitions():
+ print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
+ trans, static_model(trans, 'energy'),
+ static_model(trans, 'rel_energy_prev'),
+ static_model(trans, 'rel_energy_next'),
+ model.generic_param_dependence_ratio(trans, 'energy'),
+ model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
+ model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
+ print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
+ static_quality = model.assess(static_model)
+ ref_static_quality = ref_model.assess(ref_static_model)
+
+ if len(show_models):
+ print('--- LUT ---')
+ lut_model = model.get_param_lut()
+ lut_quality = model.assess(lut_model)
+ ref_lut_model = ref_model.get_param_lut()
+ ref_lut_quality = ref_model.assess(ref_lut_model)
+
+ if len(show_models):
+ print('--- param model ---')
+ param_model, param_info = model.get_fitted(safe_functions_enabled = safe_functions_enabled)
+ ref_param_model, ref_param_info = ref_model.get_fitted(safe_functions_enabled = safe_functions_enabled)
+ print('')
+ print('')
+ print('state_or_trans attribute param stddev_ratio corrcoef')
+ for state in model.states():
+ for attribute in model.attributes(state):
+ for param in model.parameters():
+ print('{:10s} {:10s} {:10s} {:f} {:f}'.format(state, attribute, param,
+ ref_model.param_dependence_ratio(state, attribute, param),
+ model.param_dependence_ratio(state, attribute, param)))
+ for trans in model.transitions():
+ for attribute in model.attributes(trans):
+ for param in model.parameters():
+ print('{:10s} {:10s} {:10s} {:f} {:f}'.format(trans, attribute, param,
+ ref_model.param_dependence_ratio(trans, attribute, param),
+ model.param_dependence_ratio(trans, attribute, param)))
+ print('')
+ print('')
+ analytic_quality = model.assess(param_model)
+ ref_analytic_quality = ref_model.assess(ref_param_model)
+
+ if 'tex' in show_models or 'tex' in show_quality:
+ print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality)
+
+ if 'table' in show_quality or 'all' in show_quality:
+ print('corrcoef:')
+ model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
+ print('heuristic:')
+ model_quality_table([ref_static_quality, ref_analytic_quality, ref_lut_quality], [None, ref_param_info, None])
+ if 'summary' in show_quality or 'all' in show_quality:
+ print('corrcoef:')
+ model_summary_table([static_quality, analytic_quality, lut_quality])
+ print('heuristic:')
+ model_summary_table([ref_static_quality, ref_analytic_quality, ref_lut_quality])
+
+ if 'plot-param' in opts:
+ for kv in opts['plot-param'].split(';'):
+ state_or_trans, attribute, param_name, *function = kv.split(' ')
+ if len(function):
+ function = gplearn_to_function(' '.join(function))
+ else:
+ function = None
+ plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
+
+ sys.exit(0)