diff options
Diffstat (limited to 'bin')
-rwxr-xr-x | bin/eval-kconfig.py | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/bin/eval-kconfig.py b/bin/eval-kconfig.py new file mode 100755 index 0000000..1f44b9e --- /dev/null +++ b/bin/eval-kconfig.py @@ -0,0 +1,84 @@ +#!/usr/bin/env python3 + +"""eval-kconfig - tbd +""" + +import argparse +import json +import kconfiglib +import logging +import os +import sys + +from dfatool import kconfig, validation +from dfatool.loader import KConfigAttributes +from dfatool.model import KConfigModel + +from versuchung.experiment import Experiment +from versuchung.types import String, Bool, Integer +from versuchung.files import File, Directory + + +def main(): + parser = argparse.ArgumentParser( + formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__ + ) + parser.add_argument( + "--log-level", + default=logging.INFO, + type=lambda level: getattr(logging, level.upper()), + help="Set log level", + ) + parser.add_argument( + "--attribute", choices=["rom", "ram"], default="rom", help="Model attribute" + ) + parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file") + parser.add_argument( + "experiment_root", type=str, help="Experiment results directory" + ) + parser.add_argument("model", type=str, help="JSON model", nargs="?") + + args = parser.parse_args() + + if isinstance(args.log_level, int): + logging.basicConfig(level=args.log_level) + else: + print(f"Invalid log level. Setting log level to INFO.", file=sys.stderr) + + data = KConfigAttributes(args.kconfig_path, args.experiment_root) + + k = 10 + + partition_pairs = validation._xv_partitions_kfold(len(data.data), k) + measures = list() + for training_set, validation_set in partition_pairs: + model = KConfigModel.from_benchmark(data, args.attribute, indices=training_set) + model.build_tree() + measures.append(model.assess_benchmark(data, indices=validation_set)) + + aggregate = dict() + for measure in measures[0].keys(): + aggregate[measure] = np.mean(map(lambda m: m[measure], measures)) + aggregate["unpredictable_count"] = np.sum( + map(lambda m: m["unpredictable_count"], measures) + ) + + print("10-fold Cross Validation:") + print(f"MAE: {aggregate['mae']:.0f} B") + print(f"SMAPE: {aggregate['smape']:.0f} %") + print(f"Unpredictable Configurations: {aggregate['unpredictable_count']}") + + print(aggregate) + + """ + if args.model: + with open(args.model, "r") as f: + model = KConfigModel.from_json(json.load(f)) + else: + model = KConfigModel.from_benchmark(data, args.attribute) + model.build_tree() + """ + + +if __name__ == "__main__": + main() |