summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rwxr-xr-xbin/analyze-archive.py14
-rwxr-xr-xbin/analyze-kconfig.py18
-rwxr-xr-xbin/analyze-timing.py8
3 files changed, 23 insertions, 17 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index b29091d..0a2845c 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -800,9 +800,9 @@ if __name__ == "__main__":
)
if xv_method == "montecarlo":
- static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
+ static_quality, _ = xv.montecarlo(lambda m: m.get_static(), xv_count)
elif xv_method == "kfold":
- static_quality = xv.kfold(lambda m: m.get_static(), xv_count)
+ static_quality, _ = xv.kfold(lambda m: m.get_static(), xv_count)
else:
static_quality = model.assess(static_model)
@@ -811,9 +811,11 @@ if __name__ == "__main__":
lut_model = model.get_param_lut()
if xv_method == "montecarlo":
- lut_quality = xv.montecarlo(lambda m: m.get_param_lut(fallback=True), xv_count)
+ lut_quality, _ = xv.montecarlo(
+ lambda m: m.get_param_lut(fallback=True), xv_count
+ )
elif xv_method == "kfold":
- lut_quality = xv.kfold(lambda m: m.get_param_lut(fallback=True), xv_count)
+ lut_quality, _ = xv.kfold(lambda m: m.get_param_lut(fallback=True), xv_count)
else:
lut_quality = model.assess(lut_model)
@@ -933,9 +935,9 @@ if __name__ == "__main__":
)
if xv_method == "montecarlo":
- analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
+ analytic_quality, _ = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
elif xv_method == "kfold":
- analytic_quality = xv.kfold(lambda m: m.get_fitted()[0], xv_count)
+ analytic_quality, _ = xv.kfold(lambda m: m.get_fitted()[0], xv_count)
else:
analytic_quality = model.assess(param_model)
diff --git a/bin/analyze-kconfig.py b/bin/analyze-kconfig.py
index bd9cccb..048c8c9 100755
--- a/bin/analyze-kconfig.py
+++ b/bin/analyze-kconfig.py
@@ -237,19 +237,21 @@ def main():
fit_duration = time.time() - fit_start_time
if xv_method == "montecarlo":
- static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
- analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
+ static_quality, _ = xv.montecarlo(lambda m: m.get_static(), xv_count)
+ analytic_quality, _ = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
if lut_model:
- lut_quality = xv.montecarlo(
+ lut_quality, _ = xv.montecarlo(
lambda m: m.get_param_lut(fallback=True), xv_count
)
else:
lut_quality = None
elif xv_method == "kfold":
- static_quality = xv.kfold(lambda m: m.get_static(), xv_count)
- analytic_quality = xv.kfold(lambda m: m.get_fitted()[0], xv_count)
+ static_quality, _ = xv.kfold(lambda m: m.get_static(), xv_count)
+ analytic_quality, _ = xv.kfold(lambda m: m.get_fitted()[0], xv_count)
if lut_model:
- lut_quality = xv.kfold(lambda m: m.get_param_lut(fallback=True), xv_count)
+ lut_quality, _ = xv.kfold(
+ lambda m: m.get_param_lut(fallback=True), xv_count
+ )
else:
lut_quality = None
else:
@@ -315,9 +317,9 @@ def main():
json.dump(json_model, f, sort_keys=True, cls=dfatool.utils.NpEncoder)
if xv_method == "montecarlo":
- static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
+ static_quality, _ = xv.montecarlo(lambda m: m.get_static(), xv_count)
elif xv_method == "kfold":
- static_quality = xv.kfold(lambda m: m.get_static(), xv_count)
+ static_quality, _ = xv.kfold(lambda m: m.get_static(), xv_count)
else:
static_quality = model.assess(static_model)
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index d67c553..c37ea65 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -305,7 +305,7 @@ if __name__ == "__main__":
)
if xv_method == "montecarlo":
- static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
+ static_quality, _ = xv.montecarlo(lambda m: m.get_static(), xv_count)
else:
static_quality = model.assess(static_model)
@@ -314,7 +314,9 @@ if __name__ == "__main__":
lut_model = model.get_param_lut()
if xv_method == "montecarlo":
- lut_quality = xv.montecarlo(lambda m: m.get_param_lut(fallback=True), xv_count)
+ lut_quality, _ = xv.montecarlo(
+ lambda m: m.get_param_lut(fallback=True), xv_count
+ )
else:
lut_quality = model.assess(lut_model)
@@ -412,7 +414,7 @@ if __name__ == "__main__":
print("{:10s} {:10s} {}".format("", "", info.model_args))
if xv_method == "montecarlo":
- analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
+ analytic_quality, _ = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
else:
analytic_quality = model.assess(param_model)