summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py89
1 files changed, 64 insertions, 25 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index bcbd53e..dde99d8 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -3,7 +3,7 @@ import time
import sys
import getopt
import re
-from multiprocessing import Pool, Manager
+from multiprocessing import Pool, Manager, cpu_count
from kneed import KneeLocator
from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt
@@ -86,7 +86,7 @@ def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
return bkps
print_error("No Penalty specified.")
- sys.exit()
+ sys.exit(-1)
def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, range_max=50,
@@ -220,7 +220,7 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
print_error("With the current thresh-hold S=" + str(S)
+ " it is not possible to select a penalty value.")
- sys.exit()
+ sys.exit(-1)
# very short benchmark yielded approx. 1/3 of speed compared to solution with sorting
@@ -405,7 +405,7 @@ if __name__ == '__main__':
opt_min_dist = None
opt_range_min = None
opt_range_max = None
- opt_num_processes = None
+ opt_num_processes = cpu_count()
opt_refresh_delay = None
opt_refresh_thresh = None
opt_S = None
@@ -422,7 +422,7 @@ if __name__ == '__main__':
if 'filename' not in opt:
print_error("No file specified!")
- sys.exit(2)
+ sys.exit(-1)
else:
opt_filename = opt['filename']
if 'v' in opt:
@@ -435,70 +435,70 @@ if __name__ == '__main__':
opt_jump = int(opt['jump'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'min_dist' in opt:
try:
opt_min_dist = int(opt['min_dist'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'range_min' in opt:
try:
opt_range_min = int(opt['range_min'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'range_max' in opt:
try:
opt_range_max = int(opt['range_max'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'num_processes' in opt:
try:
opt_num_processes = int(opt['num_processes'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'refresh_delay' in opt:
try:
opt_refresh_delay = int(opt['refresh_delay'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'refresh_thresh' in opt:
try:
opt_refresh_thresh = int(opt['refresh_thresh'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'S' in opt:
try:
opt_S = float(opt['S'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'pen_override' in opt:
try:
opt_pen_override = int(opt['pen_override'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'pen_modifier' in opt:
try:
opt_pen_modifier = float(opt['pen_modifier'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
if 'refinement_thresh' in opt:
try:
opt_refinement_thresh = int(opt['refinement_thresh'])
except ValueError as verr:
print(verr, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
except getopt.GetoptError as err:
print(err, file=sys.stderr)
- sys.exit(2)
+ sys.exit(-1)
# OPENING DATA
if ".json" in opt_filename:
@@ -623,8 +623,8 @@ if __name__ == '__main__':
# plt.show()
# TODO: Problem: Der Algorithmus nummeriert die Zustände nicht immer gleich... also bspw.:
# mal ist das tatsächliche Transmit mit 1 belabelt und mal mit 3
- cluster_labels_list.append(cluster.labels_)
- num_cluster_list.append(cluster.n_clusters_)
+ cluster_labels_list.append((num_trace, cluster.labels_))
+ num_cluster_list.append((num_trace, cluster.n_clusters_))
i = i + 1
else:
print_info("Discarding measurement No. " + str(num_trace) + " because it "
@@ -640,18 +640,55 @@ if __name__ == '__main__':
+ " Measurements for refinement. "
"Others did not recognize number of states correctly.")
# TODO: DEBUG Kram
- sys.exit()
+ sys.exit(0)
else:
print_info("Used all available measurements.")
- num_states = np.argmax(np.bincount(num_cluster_list))
+ num_states = np.argmax(np.bincount([elem[1] for elem in num_cluster_list]))
+ avg_per_state_list = [None] * len(cluster_labels_list)
+ used_clusters = 0
+ for number, (num_trace, labels) in enumerate(cluster_labels_list):
+ if num_cluster_list[number][1] == num_states:
+ avg_per_state = [0] * num_states
+ count_per_state = [0] * num_states
+ raw_states = raw_states_list[num_trace]
+ for num_label, label in enumerate(labels):
+ count_per_state[label] = count_per_state[label] + 1
+ avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2]
+ for i,_ in enumerate(avg_per_state):
+ avg_per_state[i] = avg_per_state[i] / count_per_state[i]
+ avg_per_state_list[number] = avg_per_state
+ used_clusters = used_clusters + 1
+
+ # flattend version for clustering:
+ values_to_cluster = np.zeros((num_states * used_clusters, 2))
+ index = 0
+ for avg_per_state in avg_per_state_list:
+ if None not in avg_per_state:
+ for avg in avg_per_state:
+ values_to_cluster[index][0] = avg
+ values_to_cluster[index][1] = 0
+ index = index + 1
+ # plt.scatter(values_to_cluster[:, 0], values_to_cluster[:, 1])
+ # plt.show()
+ cluster = AgglomerativeClustering(n_clusters=num_states)
+ cluster.fit_predict(values_to_cluster)
+ # HIER WEITER:
+ # Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die
+ # ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels.
+ # Alle identischen Zustände haben identische Labels. Dann vllt bei resulting
+ # sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist.
+
resulting_sequence = [None] * num_raw_states
i = 0
for x in resulting_sequence:
j = 0
test_list = []
- for arr in cluster_labels_list:
- if num_cluster_list[j] != num_states:
+ for arr in [elem[1] for elem in cluster_labels_list]:
+ if num_cluster_list[j][1] != num_states:
+ # hopefully this does not happen regularly
+ print_info("Discarding measurement " + str(j)
+ + " because the clustering yielded not matching results.")
j = j + 1
else:
test_list.append(arr[i])
@@ -659,6 +696,7 @@ if __name__ == '__main__':
resulting_sequence[i] = np.argmax(np.bincount(test_list))
i = i + 1
print(resulting_sequence)
+ sys.exit()
elif ".tar" in opt_filename:
# open with dfatool
@@ -670,11 +708,12 @@ if __name__ == '__main__':
print_info("Preprocessing file. Depending on its size, this could take a while.")
preprocessed_data = raw_data.get_preprocessed_data()
print_info("File fully preprocessed")
-
# TODO: Mal schauen, wie ich das mache. Erstmal nur mit json
+ print_error("Not implemented yet. Please generate .json files first with dfatool and use"
+ " those.")
else:
print_error("Unknown dataformat")
- sys.exit(2)
+ sys.exit(-1)
# print(tx_data[1]['parameter'])
# # parse json to array for PELT