summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rwxr-xr-xbin/analyze-archive.py43
1 files changed, 18 insertions, 25 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index d7e6a59..a9ee5cf 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -47,6 +47,7 @@ from dfatool.functions import (
gplearn_to_function,
SplitFunction,
AnalyticFunction,
+ SubstateFunction,
StaticFunction,
)
from dfatool.model import PTAModel
@@ -866,15 +867,6 @@ if __name__ == "__main__":
safe_functions_enabled=safe_functions_enabled
)
- if args.with_substates:
- sub_model, sub_info = model.get_fitted_sub(
- safe_functions_enabled=safe_functions_enabled,
- state_duration=raw_data.setup_by_fileno[0]["state_duration"] * 1e3,
- )
-
- # substate_model = model.get_substates()
- # print(model.assess(substate_model, ref=model.sc_by_name))
-
if "paramdetection" in show_models or "all" in show_models:
for state in model.states_and_transitions:
for attribute in model.attributes(state):
@@ -931,6 +923,8 @@ if __name__ == "__main__":
print_splitinfo(
model.parameters, info, f"{state:10s} {attribute:15s}"
)
+ elif type(info) is SubstateFunction:
+ print(f"{state:10s} {attribute:15s}: Substate (TODO)")
for trans in model.transitions:
for attribute in model.attributes(trans):
info = param_info(trans, attribute)
@@ -940,6 +934,8 @@ if __name__ == "__main__":
print_splitinfo(
model.parameters, info, f"{trans:10s} {attribute:15s}"
)
+ elif type(info) is SubstateFunction:
+ print(f"{state:10s} {attribute:15s}: Substate (TODO)")
if args.with_substates:
for submodel in model.submodel_by_name.values():
sub_param_model, sub_param_info = submodel.get_fitted()
@@ -949,14 +945,21 @@ if __name__ == "__main__":
if type(info) is AnalyticFunction:
print(
"{:10s} {:15s}: {}".format(
- substate, subattribute, info.function.model_function
- )
- )
- print(
- "{:10s} {:15s} {}".format(
- "", "", info.function.model_args
+ substate, subattribute, info.model_function
)
)
+ print("{:10s} {:15s} {}".format("", "", info.model_args))
+
+ if args.with_substates:
+ for state in model.states:
+ if (
+ type(model.attr_by_name[state]["power"].model_function)
+ is SubstateFunction
+ ):
+ # sub-state models need to know the duration of the state / transition. only needed for eval.
+ model.attr_by_name[state]["power"].model_function.static_duration = (
+ raw_data.setup_by_fileno[0]["state_duration"] * 1e3
+ )
if xv_method == "montecarlo":
analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
@@ -965,9 +968,6 @@ if __name__ == "__main__":
else:
analytic_quality = model.assess(param_model)
- if args.with_substates:
- sub_quality = model.assess(sub_model)
-
if "tex" in show_models or "tex" in show_quality:
print_text_model_data(
model,
@@ -1013,13 +1013,6 @@ if __name__ == "__main__":
[None, sub_param_info, None],
)
- if ("table" in show_quality or "all" in show_quality) and args.with_substates:
- model_quality_table(
- ["parameterized", "sub-states", "LUT"],
- [analytic_quality, sub_quality, lut_quality],
- [param_info, sub_info, None],
- )
-
if "overall" in show_quality or "all" in show_quality:
print("overall state static/param/lut MAE assuming equal state distribution:")
print(