summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/plot_generator.py123
1 files changed, 123 insertions, 0 deletions
diff --git a/bin/plot_generator.py b/bin/plot_generator.py
new file mode 100644
index 0000000..458271d
--- /dev/null
+++ b/bin/plot_generator.py
@@ -0,0 +1,123 @@
+import getopt
+import sys
+import re
+import os
+import numpy as np
+import pprint
+import json
+import matplotlib.pyplot as plt
+
+if __name__ == '__main__':
+ # OPTION RECOGNITION
+ opt = dict()
+
+ optspec = (
+ "bench_filename= "
+ "result_filename= "
+ )
+ opt_bench_filename = None
+ opt_result_filename = None
+ try:
+ raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))
+
+ for option, parameter in raw_opts:
+ optname = re.sub(r"^--", "", option)
+ opt[optname] = parameter
+ except getopt.GetoptError as err:
+ print(err, file=sys.stderr)
+ sys.exit(-1)
+
+ if "bench_filename" in opt:
+ opt_bench_filename = opt['bench_filename']
+ else:
+
+ sys.exit(-1)
+ if "result_filename" in opt:
+ opt_result_filename = opt['result_filename']
+ else:
+ print("wth")
+ sys.exit(-1)
+
+ with open(opt_bench_filename, 'r') as f:
+ configurations = json.load(f)
+ with open(opt_result_filename, 'r') as f:
+ sequence_line = f.readline()
+ begin_sequence = sequence_line.rfind("Resulting Sequence: ") + 20
+
+ if begin_sequence < 20:
+ print("nicht gefunden!")
+ sys.exit(-1)
+ sequence_substr = sequence_line[begin_sequence:]
+ resulting_sequence = eval(sequence_substr)
+ new_line = f.readline()
+ while new_line == "\n":
+ new_line = f.readline()
+ function_line = new_line
+ pow_function_dict = dict()
+ while function_line != "\n":
+ state_name_pos = function_line.find("Power-Function for state ") + 25
+ state_name_end = function_line.find(":")
+ state_name = function_line[state_name_pos:state_name_end]
+ function_string = function_line[state_name_end+1:-1]
+ pow_function_dict[state_name] = function_string
+ function_line = f.readline()
+ new_line = "\n"
+ while new_line == "\n":
+ new_line = f.readline()
+ function_line = new_line
+ dur_function_dict = dict()
+ while function_line != "\n" and function_line != "" and "THIS RESULT IS NOT ACCURATE." not in function_line:
+ state_name_pos = function_line.find("Duration-Function for state ") + 28
+ state_name_end = function_line.find(":")
+ state_name = function_line[state_name_pos:state_name_end]
+ function_string = function_line[state_name_end+1:-1]
+ dur_function_dict[state_name] = function_string
+ function_line = f.readline()
+
+ param_names = configurations[0]['offline_aggregates']['paramkeys'][0]
+
+ for num_fig in range(0, min(4, len(configurations))):
+ rand_config_no = np.random.randint(0, len(configurations), 1)[0]
+ rand_conf = configurations[rand_config_no]
+ rand_signal = np.array(rand_conf['offline'][0]['uW'])
+ rand_param = rand_conf['offline_aggregates']['param'][0]
+ rand_max_pow = max(rand_signal)
+ # pprint.pprint(rand_param)
+ pretty_rand_param = pprint.pformat(rand_param)
+ print(str(param_names) + "(" + str(rand_config_no) + ")" + "\n" + pretty_rand_param)
+ time = 0
+ next_time = 0
+ rand_stepper = 0
+ pow = 0
+ resulting_coords = list()
+ while rand_stepper < len(resulting_sequence):
+ curr_state = resulting_sequence[rand_stepper]
+ curr_state_name = "State_" + str(curr_state)
+ curr_pow_func = pow_function_dict[curr_state_name]
+ curr_dur_func = dur_function_dict[curr_state_name]
+ for num_param, name in enumerate(param_names):
+ replace_string = "parameter(" + name + ")"
+ curr_pow_func = curr_pow_func.replace(replace_string, str(rand_param[num_param]))
+ curr_dur_func = curr_dur_func.replace(replace_string, str(rand_param[num_param]))
+ pow = eval(curr_pow_func)
+ dur = eval(curr_dur_func)
+ next_time = time + dur
+ start_coord = (time, pow)
+ end_coord = (next_time, pow)
+ resulting_coords.append(start_coord)
+ resulting_coords.append(end_coord)
+ rand_stepper = rand_stepper + 1
+ time = next_time
+
+ with open("res_conf_" + str(num_fig) + "_signal.txt", 'w') as f:
+ f.write("x,y\n")
+ for x, y in enumerate(rand_signal):
+ f.write(str(x) + "," + str(y) + "\n")
+ with open("res_conf_" + str(num_fig) + "_fit.txt", 'w') as f:
+ f.write("x,y\n")
+ for x, y in resulting_coords:
+ f.write(str(x) + "," + str(y) + "\n")
+ plt.plot(rand_signal)
+ plt.plot([x for x, y in resulting_coords], [y for x, y in resulting_coords])
+ plt.savefig("res_conf_" + str(num_fig) + "_pic.pdf", format='pdf', dpi=300)
+ plt.clf()