summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rwxr-xr-xbin/analyze-kconfig.py224
1 files changed, 224 insertions, 0 deletions
diff --git a/bin/analyze-kconfig.py b/bin/analyze-kconfig.py
new file mode 100755
index 0000000..da97c58
--- /dev/null
+++ b/bin/analyze-kconfig.py
@@ -0,0 +1,224 @@
+#!/usr/bin/env python3
+
+"""analyze-kconfig - Generate a model for KConfig selections
+
+analyze-kconfig builds a model determining system attributes
+(e.g. ROM or RAM usage) based on KConfig configuration variables.
+Only boolean variables are supported at the moment.
+"""
+
+import argparse
+import json
+import kconfiglib
+import logging
+import os
+
+import numpy as np
+
+import dfatool.utils
+from dfatool.loader import KConfigAttributes
+from dfatool.model import AnalyticModel
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
+ )
+ parser.add_argument(
+ "--show-failing-symbols",
+ action="store_true",
+ help="Show Kconfig symbols related to build failures. Must be used with an experiment result directory.",
+ )
+ parser.add_argument(
+ "--show-nop-symbols",
+ action="store_true",
+ help="Show Kconfig symbols which are only present in a single configuration. Must be used with an experiment result directory.",
+ )
+ parser.add_argument(
+ "--force-tree",
+ action="store_true",
+ help="Build decision tree without checking for analytic functions first. Use this for large kconfig files.",
+ )
+ parser.add_argument(
+ "--export-tree",
+ type=str,
+ help="Export kconfig-webconf model to file",
+ metavar="FILE",
+ )
+ parser.add_argument(
+ "--config",
+ type=str,
+ help="Show model results for symbols in .config file",
+ metavar="FILE",
+ )
+ parser.add_argument(
+ "--log-level",
+ default=logging.INFO,
+ type=lambda level: getattr(logging, level.upper()),
+ help="Set log level",
+ )
+ parser.add_argument(
+ "--info", action="store_true", help="Show Kconfig and benchmark information"
+ )
+ parser.add_argument(
+ "--sample-size",
+ type=int,
+ help="Restrict model generation to N random samples",
+ metavar="N",
+ )
+ parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file")
+ parser.add_argument(
+ "model",
+ type=str,
+ help="Path to experiment results directory or model.json file",
+ )
+
+ args = parser.parse_args()
+
+ if isinstance(args.log_level, int):
+ logging.basicConfig(level=args.log_level)
+ else:
+ print(f"Invalid log level. Setting log level to INFO.", file=sys.stderr)
+
+ if os.path.isdir(args.model):
+ attributes = KConfigAttributes(args.kconfig_path, args.model)
+
+ if args.show_failing_symbols:
+ show_failing_symbols(attributes)
+ if args.show_nop_symbols:
+ show_nop_symbols(attributes)
+
+ observations = list()
+
+ for param, attr in attributes.data:
+ for key, value in attr.items():
+ observations.append(
+ {
+ "name": key,
+ "param": param,
+ "attribute": value,
+ }
+ )
+
+ if args.sample_size:
+ shuffled_data_indices = np.random.permutation(
+ np.arange(len(attributes.data))
+ )
+ sample_indices = shuffled_data_indices[: args.sample_size]
+ raise RuntimeError("Not Implemented")
+
+ by_name, parameter_names = dfatool.utils.observations_to_by_name(observations)
+
+ model = AnalyticModel(
+ by_name, parameter_names, compute_stats=not args.force_tree
+ )
+
+ if args.force_tree:
+ for name in model.names:
+ for attr in model.by_name[name]["attributes"]:
+ # TODO specify correct threshold
+ model.build_dtree(name, attr, 20)
+
+ else:
+ raise NotImplementedError()
+
+ if args.info:
+ print("TODO")
+
+ if args.export_tree:
+ with open(args.export_tree, "w") as f:
+ json.dump(model.to_json(), f, sort_keys=True, cls=dfatool.utils.NpEncoder)
+
+ if args.config:
+ kconf = kconfiglib.Kconfig(args.kconfig_path)
+ kconf.load_config(args.config)
+ print(f"Model result for .config: {model.value_for_config(kconf)}")
+
+ for symbol in model.symbols:
+ kconf2 = kconfiglib.Kconfig(args.kconfig_path)
+ kconf2.load_config(args.config)
+ kconf_sym = kconf2.syms[symbol]
+ if kconf_sym.tri_value == 0 and 2 in kconf_sym.assignable:
+ kconf_sym.set_value(2)
+ elif kconf_sym.tri_value == 2 and 0 in kconf_sym.assignable:
+ kconf_sym.set_value(0)
+ else:
+ continue
+
+ # specific to multipass:
+ # Do not suggest changes which affect the application
+ skip = False
+ num_changes = 0
+ changed_symbols = list()
+ for i, csymbol in enumerate(model.symbols):
+ if kconf.syms[csymbol].tri_value != kconf2.syms[csymbol].tri_value:
+ num_changes += 1
+ changed_symbols.append(csymbol)
+ if (
+ csymbol.startswith("app_")
+ and kconf.syms[csymbol].tri_value
+ != kconf2.syms[csymbol].tri_value
+ ):
+ skip = True
+ break
+ if skip:
+ continue
+
+ try:
+ model_diff = model.value_for_config(kconf2) - model.value_for_config(
+ kconf
+ )
+ if kconf_sym.choice:
+ print(
+ f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}"
+ )
+ else:
+ print(
+ f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}"
+ )
+ except TypeError:
+ if kconf_sym.choice:
+ print(
+ f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model is undefined"
+ )
+ else:
+ print(
+ f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model is undefined"
+ )
+ for changed_symbol in changed_symbols:
+ print(
+ f" {changed_symbol:30s} -> {kconf2.syms[changed_symbol].str_value}"
+ )
+
+
+def show_failing_symbols(data):
+ for symbol in data.param_names:
+ unique_values = list(set(map(lambda p: p[symbol], data.failures)))
+ for value in unique_values:
+ fail_count = len(list(filter(lambda p: p[symbol] == value, data.failures)))
+ success_count = len(
+ list(filter(lambda p: p[0][symbol] == value, data.data))
+ )
+ if success_count == 0 and fail_count > 0:
+ print(
+ f"Setting {symbol} to '{value}' reliably causes the build to fail (count = {fail_count})"
+ )
+
+
+def show_nop_symbols(data):
+ for symbol in data.symbol_names:
+ true_count = len(
+ list(filter(lambda config: config[symbol] == True, data.failures))
+ ) + len(list(filter(lambda config: config[0][symbol] == True, data.data)))
+ false_count = len(
+ list(filter(lambda config: config[symbol] == False, data.failures))
+ ) + len(list(filter(lambda config: config[0][symbol] == False, data.data)))
+ if false_count == 0:
+ print(f"Symbol {symbol} is never n")
+ if true_count == 0:
+ print(f"Symbol {symbol} is never y")
+ pass
+
+
+if __name__ == "__main__":
+ main()