summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py52
1 files changed, 38 insertions, 14 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index 4819f64..ac32d88 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -4,6 +4,7 @@ import time
import sys
import getopt
import re
+import pprint
from multiprocessing import Pool, Manager, cpu_count
from kneed import KneeLocator
from sklearn.cluster import AgglomerativeClustering
@@ -21,7 +22,8 @@ from dfatool.utils import by_name_to_by_param
# from scipy.cluster.hierarchy import dendrogram, linkage # for graphical display
# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100
-# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100 --cache_dicts --cache_loc="..\data\TX_cache"
+# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100 --cache_dicts --cache_loc="..\data\TX2_cache"
+from dfatool.validation import CrossValidator
def plot_data_from_json(filename, trace_num, x_axis, y_axis):
@@ -98,7 +100,7 @@ def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, range_max=50,
num_processes=8, refresh_delay=1, refresh_thresh=5, S=1.0,
- pen_modifier=None):
+ pen_modifier=None, show_plots=False):
# default params in Function
if model is None:
model = "l1"
@@ -138,7 +140,7 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
print_info("starting kneepoint calculation.")
# init Pool with num_proesses
- with Pool(num_processes) as p:
+ with Pool(min(num_processes, len(args))) as p:
# collect results from pool
result = p.starmap_async(get_bkps, args)
# monitor loop
@@ -199,18 +201,24 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
if i == len(fitted_bkps_val[knee[0]:]) - 1:
# end sequence with last value
end_index = i
+ # # since it is not guaranteed that this is the end of the plateau, assume the mid
+ # # of the plateau was hit.
+ # size = end_index - start_index
+ # end_index = end_index + size
+ # However this is not the clean solution. Better if search interval is widened
if end_index - start_index > longest_end - longest_start:
# last found sequence is the longest found yet
longest_start = start_index
longest_end = end_index
start_index = i
prev_val = num_bkpts
- # plt.xlabel('Penalty')
- # plt.ylabel('Number of Changepoints')
- # plt.plot(pen_val, fitted_bkps_val)
- # plt.vlines(longest_start + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
- # plt.vlines(longest_end + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
- # plt.show()
+ if show_plots:
+ plt.xlabel('Penalty')
+ plt.ylabel('Number of Changepoints')
+ plt.plot(pen_val, fitted_bkps_val)
+ plt.vlines(longest_start + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
+ plt.vlines(longest_end + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
+ plt.show()
# choosing pen from plateau
mid_of_plat = longest_start + (longest_end - longest_start) // 2
knee = (mid_of_plat + knee[0], fitted_bkps_val[mid_of_plat + knee[0]])
@@ -331,7 +339,7 @@ def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
def calc_raw_states(arg_list, num_processes=8):
m = Manager()
- with Pool(processes=num_processes) as p:
+ with Pool(processes=min(num_processes, len(arg_list))) as p:
# collect results from pool
result = p.starmap(calc_raw_states_func, arg_list)
return result
@@ -375,7 +383,7 @@ def print_error(str_to_prt):
print("[ERROR]" + str_prt, file=sys.stderr)
-def norm_signal(signal, scaler=50):
+def norm_signal(signal, scaler=25):
# TODO: maybe refine normalisation of signal
max_val = max(signal)
normed_signal = np.zeros(shape=len(signal))
@@ -656,6 +664,10 @@ if __name__ == '__main__':
+ "measurement No. " + str(num_measurement) + " is " + str(
avg_std))
print_info("That is a reduction of " + str(change_avg_std))
+ # l_signal = measurements_by_config['offline'][num_measurement]['uW']
+ # l_bkpts = [s[1] for s in raw_states]
+ # fig, ax = rpt.display(np.array(l_signal), l_bkpts)
+ # plt.show()
print_info("Finished raw_states calculation.")
num_states_array = [int()] * len(raw_states_list)
i = 0
@@ -787,6 +799,10 @@ if __name__ == '__main__':
print_info("All configs usable.")
else:
print_info("Using only " + str(usable_configs) + " Configs.")
+ if num_raw_states == 1:
+ print_info("Upon further inspection it is clear that no refinement is necessary."
+ " The macromodel is usable.")
+ sys.exit(-1)
by_name = {}
usable_configs_2 = len(state_consumptions_by_config)
for i in range(num_raw_states):
@@ -1034,9 +1050,17 @@ if __name__ == '__main__':
model_function = model_function.replace(replace_string, str(arg))
print("Duration-Function for state " + state_name + ": "
+ model_function)
- model = PTAModel(new_by_name, param_names, dict())
- model_json = model.to_json()
- print(model_json)
+ # model = PTAModel(new_by_name, param_names, dict())
+ # model_json = model.to_json()
+ # param_model, _ = model.get_fitted()
+ # param_quality = model.assess(param_model)
+ # pprint.pprint(param_quality)
+ # # model = PTAModel(by_name, ...)
+ # # validator = CrossValidator(PTAModel, by_name, ...)
+ # # param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10)
+ # validator = CrossValidator(PTAModel, new_by_name, param_names, dict())
+ # param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10)
+ # pprint.pprint(param_quality)
if not_accurate:
print_warning(
"THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"