summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py213
1 files changed, 93 insertions, 120 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index 605ed7e..688c5a7 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -18,7 +18,6 @@ from dfatool import parameters
from dfatool.model import ParallelParamFit, PTAModel
from dfatool.utils import by_name_to_by_param
-
# from scipy.cluster.hierarchy import dendrogram, linkage # for graphical display
# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100
@@ -26,6 +25,7 @@ from dfatool.utils import by_name_to_by_param
from dfatool.validation import CrossValidator
+# helper functions. Not used
def plot_data_from_json(filename, trace_num, x_axis, y_axis):
with open(filename, 'r') as file:
tx_data = json.load(file)
@@ -60,18 +60,26 @@ def plot_data_vs_data_vs_means(signal1, signal2, x_axis, y_axis):
plt.show()
+# returns the found changepoints by algo for the specific penalty pen.
+# algo should be the return value of Pelt(...).fit(signal)
+# Also puts a token in container q to let the progressmeter know the changepoints for penalty pen
+# have been calculated.
+# used for parallel calculation of changepoints vs penalty
def get_bkps(algo, pen, q):
res = pen, len(algo.predict(pen=pen))
q.put(pen)
return res
+# Wrapper for kneedle
def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing'):
kneedle = KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
kneepoint = (kneedle.knee, kneedle.knee_y)
return kneepoint
+# returns the changepoints found on signal with penalty penalty.
+# model, jump and min_dist are directly passed to PELT
def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
# default params in Function
if model is None:
@@ -98,6 +106,11 @@ def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
sys.exit(-1)
+# calculates and returns the necessary penalty for signal. Parallel execution with num_processes many processes
+# jump, min_dist are passed directly to PELT. S is directly passed to kneedle.
+# pen_modifier is used as a factor on the resulting penalty.
+# the interval [range_min, range_max] is used for searching.
+# refresh_delay and refresh_thresh are used to configure the progress "bar".
def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, range_max=50,
num_processes=8, refresh_delay=1, refresh_thresh=5, S=1.0,
pen_modifier=None, show_plots=False):
@@ -136,6 +149,7 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
q = m.Queue()
for i in range(range_min, range_max + 1):
+ # same calculation for all except other penalty
args.append((algo, i, q))
print_info("starting kneepoint calculation.")
@@ -184,7 +198,9 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
# peaks, peak_plateaus = find_peaks(- np.array(fitted_bkps_val), plateau_size=1)
# Since the data is monotonously decreasing only one plateau can be found.
- # assuming the plateau is constant
+ # assuming the plateau is constant, i.e. no noise. OK to assume this here, since num_bkpts
+ # is monotonously decreasing. If the number of bkpts decreases inside a considered
+ # plateau, it means that the stable configuration is not yet met. -> Search further
start_index = -1
end_index = -1
longest_start = -1
@@ -206,6 +222,7 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
# size = end_index - start_index
# end_index = end_index + size
# However this is not the clean solution. Better if search interval is widened
+ # with range_min and range_max
if end_index - start_index > longest_end - longest_start:
# last found sequence is the longest found yet
longest_start = start_index
@@ -238,78 +255,20 @@ def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0,
sys.exit(-1)
-# very short benchmark yielded approx. 1/3 of speed compared to solution with sorting
-# def needs_refinement_no_sort(signal, mean, thresh):
-# # linear search for the top 10%/ bottom 10%
-# # should be sufficient
-# length_of_signal = len(signal)
-# percentile_size = int()
-# percentile_size = length_of_signal // 100
-# upper_percentile = [None] * percentile_size
-# lower_percentile = [None] * percentile_size
-# fill_index_upper = percentile_size - 1
-# fill_index_lower = percentile_size - 1
-# index_smallest_val = fill_index_upper
-# index_largest_val = fill_index_lower
-#
-# for x in signal:
-# if x > mean:
-# # will be in upper percentile
-# if fill_index_upper >= 0:
-# upper_percentile[fill_index_upper] = x
-# if x < upper_percentile[index_smallest_val]:
-# index_smallest_val = fill_index_upper
-# fill_index_upper = fill_index_upper - 1
-# continue
-#
-# if x > upper_percentile[index_smallest_val]:
-# # replace smallest val. Find next smallest val
-# upper_percentile[index_smallest_val] = x
-# index_smallest_val = 0
-# i = 0
-# for y in upper_percentile:
-# if upper_percentile[i] < upper_percentile[index_smallest_val]:
-# index_smallest_val = i
-# i = i + 1
-#
-# else:
-# if fill_index_lower >= 0:
-# lower_percentile[fill_index_lower] = x
-# if x > lower_percentile[index_largest_val]:
-# index_largest_val = fill_index_upper
-# fill_index_lower = fill_index_lower - 1
-# continue
-# if x < lower_percentile[index_largest_val]:
-# # replace smallest val. Find next smallest val
-# lower_percentile[index_largest_val] = x
-# index_largest_val = 0
-# i = 0
-# for y in lower_percentile:
-# if lower_percentile[i] > lower_percentile[index_largest_val]:
-# index_largest_val = i
-# i = i + 1
-#
-# # should have the percentiles
-# lower_percentile_mean = np.mean(lower_percentile)
-# upper_percentile_mean = np.mean(upper_percentile)
-# dist = mean - lower_percentile_mean
-# if dist > thresh:
-# return True
-# dist = upper_percentile_mean - mean
-# if dist > thresh:
-# return True
-# return False
-
-
-# raw_states_calc_args.append((num_measurement, measurement, penalty, opt_model
-# , opt_jump))
+# calculates the raw_states for measurement measurement. num_measurement is used to identify the
+# return value
+# penalty, model and jump are directly passed to pelt
def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
+ # extract signal
signal = np.array(measurement['uW'])
+ # norm signal to remove dependency on absolute values
normed_signal = norm_signal(signal)
+ # calculate the breakpoints
bkpts = calc_pelt(normed_signal, penalty, model=model, jump=jump)
calced_states = list()
start_time = 0
end_time = 0
+ # calc metrics for all states
for bkpt in bkpts:
# start_time of state is end_time of previous one
# (Transitions are instantaneous)
@@ -322,6 +281,7 @@ def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
calced_states.append(calced_state)
num = 0
new_avg_std = 0
+ # calc avg std for all states from this measurement
for s in calced_states:
# print_info("State " + str(num) + " starts at t=" + str(s[0])
# + " and ends at t=" + str(s[1])
@@ -329,7 +289,11 @@ def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
# + "uW with sigma=" + str(s[3]))
num = num + 1
new_avg_std = new_avg_std + s[3]
- new_avg_std = new_avg_std / len(calced_states)
+ # check case if no state has been found to avoid crashing
+ if len(calced_states) != 0:
+ new_avg_std = new_avg_std / len(calced_states)
+ else:
+ new_avg_std = 0
change_avg_std = measurement['uW_std'] - new_avg_std
# print_info("The average standard deviation for the newly found states is "
# + str(new_avg_std))
@@ -337,6 +301,7 @@ def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
return num_measurement, calced_states, new_avg_std, change_avg_std
+# parallelize calc over all measurements
def calc_raw_states(arg_list, num_processes=8):
m = Manager()
with Pool(processes=min(num_processes, len(arg_list))) as p:
@@ -346,6 +311,7 @@ def calc_raw_states(arg_list, num_processes=8):
# Very short benchmark yielded approx. 3 times the speed of solution not using sort
+# checks the percentiles if refinement is necessary
def needs_refinement(signal, thresh):
sorted_signal = sorted(signal)
length_of_signal = len(signal)
@@ -364,7 +330,8 @@ def needs_refinement(signal, thresh):
return True
return False
-
+# helper functions for user output
+# TODO: maybe switch with python logging feature
def print_info(str_to_prt):
str_lst = str_to_prt.split(sep='\n')
for str_prt in str_lst:
@@ -383,18 +350,17 @@ def print_error(str_to_prt):
print("[ERROR]" + str_prt, file=sys.stderr)
+# norms the signal and apply scaler to all values as a factor
def norm_signal(signal, scaler=25):
- # TODO: maybe refine normalisation of signal
max_val = max(signal)
normed_signal = np.zeros(shape=len(signal))
for i, signal_i in enumerate(signal):
normed_signal[i] = signal_i / max_val
normed_signal[i] = normed_signal[i] * scaler
- # plt.plot(normed_signal)
- # plt.show()
return normed_signal
+# norms the values to prepare them for clustering
def norm_values_to_cluster(values_to_cluster):
new_vals = np.array(values_to_cluster)
num_samples = len(values_to_cluster)
@@ -409,6 +375,7 @@ def norm_values_to_cluster(values_to_cluster):
return new_vals
+# finds state_num using state name
def get_state_num(state_name, distinct_states):
for state_num, states in enumerate(distinct_states):
if state_name in states:
@@ -564,9 +531,9 @@ if __name__ == '__main__':
# plt.show()
# sys.exit()
- # loop through all traces check if refinement is necessary
# resulting_sequence_list = []
# search for param_names, by_param and by_name files
+ # cachingopts
by_param_file = None
by_name_file = None
param_names_file = None
@@ -597,34 +564,44 @@ if __name__ == '__main__':
else:
print_warning("THE OPTION \"cache_dicts\" IS FOR DEBUGGING PURPOSES ONLY! "
"\nDO NOT USE FOR REGULAR APPLICATIONS!"
- "\nThe script will not run to the end properly."
- "\nNo final parametrization will be done.")
+ "\nThis will possibly not be maintained in further development.")
from_cache = True
big_state_name = configurations[0]['name']
if None in (by_param_file, by_name_file, param_names_file):
state_durations_by_config = []
state_consumptions_by_config = []
+ # loop through all traces check if refinement is necessary and if necessary refine it.
for num_config, measurements_by_config in enumerate(configurations):
# loop through all occurrences of the looked at state
print_info("Looking at state '" + measurements_by_config['name'] + "' with params: "
+ str(measurements_by_config['parameter']) + "(" + str(
num_config + 1) + "/"
+ str(len(configurations)) + ")")
- refine = False
+ num_needs_refine = 0
print_info("Checking if refinement is necessary...")
for measurement in measurements_by_config['offline']:
# loop through measurements of particular state
# an check if state needs refinement
signal = measurement['uW']
# mean = measurement['uW_mean']
- if needs_refinement(signal, opt_refinement_thresh) and not refine:
- print_info("Refinement is necessary!")
- refine = True
- if not refine:
+ if needs_refinement(signal, opt_refinement_thresh):
+ num_needs_refine = num_needs_refine + 1
+ if num_needs_refine == 0:
+ print_info(
+ "No refinement necessary for state '" + measurements_by_config['name']
+ + "' with params: " + str(measurements_by_config['parameter']))
+ elif num_needs_refine < len(measurements_by_config['offline']) / 2:
print_info(
"No refinement necessary for state '" + measurements_by_config['name']
+ "' with params: " + str(measurements_by_config['parameter']))
+ print_warning(
+ "However this decision was not unanimously. This could hint a poor"
+ "measurement quality.")
else:
+ if num_needs_refine != len(measurements_by_config['parameter']):
+ print_warning(
+ "However this decision was not unanimously. This could hint a poor"
+ "measurement quality.")
# assume that all measurements of the same param configuration are fundamentally
# similar -> calculate penalty for first measurement, use it for all
if opt_pen_override is None:
@@ -651,18 +628,18 @@ if __name__ == '__main__':
raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
# extracting result and putting it in correct order -> index of raw_states_list
# entry still corresponds with index of measurement in measurements_by_states
- # -> If measurements are discarded the correct ones are easily recognized
+ # -> If measurements are discarded the used ones are easily recognized
for ret_val in raw_states_res:
num_measurement = ret_val[0]
raw_states = ret_val[1]
avg_std = ret_val[2]
change_avg_std = ret_val[3]
- # TODO: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
+ # FIXME: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
# int sein oder nicht? Es scheint auch vernünftig zu klappen...
raw_states_list[num_measurement] = raw_states
print_info("The average standard deviation for the newly found states in "
- + "measurement No. " + str(num_measurement) + " is " + str(
- avg_std))
+ + "measurement No. " + str(num_measurement) + " is "
+ + str(avg_std))
print_info("That is a reduction of " + str(change_avg_std))
# l_signal = measurements_by_config['offline'][num_measurement]['uW']
# l_bkpts = [s[1] for s in raw_states]
@@ -681,8 +658,9 @@ if __name__ == '__main__':
# TODO: MAGIC NUMBER
if num_states_dev > 1:
print_warning("The number of states varies strongly across measurements."
- " Consider choosing a larger value for S or using the "
- "pen_modifier option.")
+ " Consider choosing a larger range for penalty detection."
+ " It is also possible, that the processed data is not accurate"
+ " enough to produce proper results.")
time.sleep(5)
# TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
# Einfach Durchschnitt nehmen?
@@ -691,6 +669,11 @@ if __name__ == '__main__':
counts = np.bincount(num_states_array)
num_raw_states = np.argmax(counts)
print_info("Choose " + str(num_raw_states) + " as number of raw_states.")
+ if num_raw_states == 1:
+ print_info(
+ "Upon further inspection it is clear that no refinement is necessary."
+ " The macromodel is usable for this configuration.")
+ continue
# iterate through all found breakpoints and determine start and end points as well
# as power consumption
num_measurements = len(raw_states_list)
@@ -729,8 +712,8 @@ if __name__ == '__main__':
if num_used_measurements != len(raw_states_list):
if num_used_measurements / len(raw_states_list) <= 0.5:
print_warning("Only used " + str(num_used_measurements) + "/"
- + str(
- len(raw_states_list)) + " Measurements for refinement. "
+ + str(len(raw_states_list))
+ + " Measurements for refinement. "
+ "Others did not recognize number of states correctly."
+ "\nYou should verify the integrity of the measurements.")
else:
@@ -738,22 +721,16 @@ if __name__ == '__main__':
+ str(len(raw_states_list)) + " Measurements for refinement."
+ " Others did not recognize number of states correctly.")
num_used_measurements = i
- # TODO: DEBUG Kram
- #sys.exit(0)
else:
print_info("Used all available measurements.")
state_durations_by_config.append((num_config, states_duration_list))
state_consumptions_by_config.append((num_config, states_consumption_list))
- # # TODO:
- # if num_config == 6:
- # print("BRECHE AUS")
- # break
# combine all state durations and consumptions to parametrized model
if len(state_durations_by_config) == 0:
print("No refinement necessary for this state. The macromodel is usable.")
- sys.exit()
+ sys.exit(1)
if len(state_durations_by_config) / len(configurations) > 1 / 2 \
and len(state_durations_by_config) != len(configurations):
print_warning(
@@ -799,10 +776,7 @@ if __name__ == '__main__':
print_info("All configs usable.")
else:
print_info("Using only " + str(usable_configs) + " Configs.")
- if num_raw_states == 1:
- print_info("Upon further inspection it is clear that no refinement is necessary."
- " The macromodel is usable.")
- sys.exit(-1)
+ # build by_name
by_name = {}
usable_configs_2 = len(state_consumptions_by_config)
for i in range(num_raw_states):
@@ -824,7 +798,7 @@ if __name__ == '__main__':
"power": consumptions_for_state,
"duration": durations_for_state,
"attributes": ["power", "duration"],
- # Da kein richtiger Automat generiert wird, gibt es auch keine Transitionen
+ # Da kein "richtiger" Automat generiert wird, gibt es auch keine Transitionen
"isa": "state"
}
by_name[state_name] = state_dict
@@ -877,6 +851,7 @@ if __name__ == '__main__':
paramfit.fit()
fit_res_dur_dict = {}
fit_res_pow_dict = {}
+ # fit functions and check if successful
for state_name in by_name.keys():
fit_power = paramfit.get_result(state_name, "power")
fit_duration = paramfit.get_result(state_name, "duration")
@@ -893,6 +868,7 @@ if __name__ == '__main__':
# only raw_states with the same number of function parameters can be similar
num_param_pow_dict = {}
num_param_dur_dict = {}
+ # print found substate_results
for state_name in by_name.keys():
model_function = str(fit_res_pow_dict[state_name].model_function)
model_args = fit_res_pow_dict[state_name].model_args
@@ -911,6 +887,7 @@ if __name__ == '__main__':
model_function = model_function.replace(replace_string, str(arg))
print_info("Duration-Function for state " + state_name + ": "
+ model_function)
+ # sort states in buckets for clustering
similar_raw_state_buckets = {}
for state_name in by_name.keys():
pow_model_function = str(fit_res_pow_dict[state_name].model_function)
@@ -927,7 +904,9 @@ if __name__ == '__main__':
+ str(similar_raw_state_buckets[key_tuple]))
similar_states = similar_raw_state_buckets[key_tuple]
if len(similar_states) > 1:
- # functions are identical -> num_params is identical
+ # only necessary to cluster if more than one raw_state has the same function
+ # configuration
+ # functions are identical -> num_params and used params are identical
num_params = num_param_dur_dict[similar_states[0]] + num_param_pow_dict[
similar_states[0]]
values_to_cluster = np.zeros((len(similar_states), num_params))
@@ -951,7 +930,7 @@ if __name__ == '__main__':
cluster_labels = cluster.labels_
print_info("Cluster labels:\n" + str(cluster_labels))
if cluster.n_clusters_ > 1:
- # more than one distinct state found
+ # more than one distinct state found -> seperation of raw_states necessary
distinct_state_dict = {}
for num_state, label in enumerate(cluster_labels):
if label not in distinct_state_dict.keys():
@@ -960,6 +939,7 @@ if __name__ == '__main__':
for distinct_state_key in distinct_state_dict.keys():
distinct_states.append(distinct_state_dict[distinct_state_key])
else:
+ # all raw_states make up this state
distinct_states.append(similar_states)
else:
distinct_states.append(similar_states)
@@ -968,6 +948,7 @@ if __name__ == '__main__':
num_raw_states = len(by_name.keys())
resulting_sequence = [int] * num_raw_states
for i in range(num_raw_states):
+ # apply the projection from raw_states to states
state_name = "state_" + str(i)
state_num = get_state_num(state_name, distinct_states)
if state_num == -1:
@@ -982,7 +963,7 @@ if __name__ == '__main__':
# "\nTHE SCRIPT WILL NOW STOP PREMATURELY,"
# "SINCE DATA FOR FURTHER COMPUTATION IS MISSING!")
# sys.exit(0)
-
+ # parameterize all new states
new_by_name = {}
for num_state, distinct_state in enumerate(distinct_states):
state_name = "State_" + str(num_state)
@@ -1034,6 +1015,7 @@ if __name__ == '__main__':
print_warning("Fitting(duration) for state " + state_name + " was not succesful!")
new_fit_res_pow_dict[state_name] = combined_fit_power
new_fit_res_dur_dict[state_name] = combined_fit_duration
+ # output results
result_loc = os.path.join(filepath, "result" + big_state_name + ".txt")
with open(result_loc, "w") as f:
f.write("Resulting Sequence: " + str(resulting_sequence))
@@ -1066,9 +1048,11 @@ if __name__ == '__main__':
f.write("THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"
" WHY.")
-
- # TODO: removed clustering (temporarily), since it provided too much dificultys
- # at the current state
+ # Removed clustering at this point, since it provided too much difficulties
+ # at the current state. Clustering is still used, but at another point of execution.
+ # Now parametrization is done first. raw_states are grouped by their using a dict
+ # where the key is [power_function, duration_dunction]. Then all raw_states from
+ # each bucket are clustered by their parameters
# i = 0
# cluster_labels_list = []
# num_cluster_list = []
@@ -1249,21 +1233,10 @@ if __name__ == '__main__':
print_info("Preprocessing file. Depending on its size, this could take a while.")
preprocessed_data = raw_data.get_preprocessed_data()
print_info("File fully preprocessed")
- # TODO: Mal schauen, wie ich das mache. Erstmal nur mit json
+ # TODO: Mal schauen, wie ich das mache. Erstmal nur mit json. Ist erstmal raus. Wird nicht
+ # umgesetzt.
print_error("Not implemented yet. Please generate .json files first with dfatool and use"
" those.")
else:
print_error("Unknown dataformat")
- sys.exit(-1)
-
- # print(tx_data[1]['parameter'])
- # # parse json to array for PELT
- # signal = np.array(tx_data[1]['offline'][0]['uW'])
- #
- # for i in range(0, len(signal)):
- # signal[i] = signal[i]/1000
- # bkps = calc_pelt(signal, model=opt_model, range_max=opt_range_max, num_processes=opt_num_processes, jump=opt_jump, S=opt_S)
- # fig, ax = rpt.display(signal, bkps)
- # plt.xlabel('Time [us]')
- # plt.ylabel('Power [mW]')
- # plt.show()
+ sys.exit(-1) \ No newline at end of file