diff options
Diffstat (limited to 'bin')
-rw-r--r-- | bin/Proof_Of_Concept_PELT.py | 1242 | ||||
-rw-r--r-- | bin/plot_generator.py | 123 |
2 files changed, 1365 insertions, 0 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py new file mode 100644 index 0000000..688c5a7 --- /dev/null +++ b/bin/Proof_Of_Concept_PELT.py @@ -0,0 +1,1242 @@ +import json +import os +import time +import sys +import getopt +import re +import pprint +from multiprocessing import Pool, Manager, cpu_count +from kneed import KneeLocator +from sklearn.cluster import AgglomerativeClustering +import matplotlib.pyplot as plt +import ruptures as rpt +import numpy as np + +from dfatool.functions import analytic +from dfatool.loader import RawData +from dfatool import parameters +from dfatool.model import ParallelParamFit, PTAModel +from dfatool.utils import by_name_to_by_param + +# from scipy.cluster.hierarchy import dendrogram, linkage # for graphical display + +# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100 +# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100 --cache_dicts --cache_loc="..\data\TX2_cache" +from dfatool.validation import CrossValidator + + +# helper functions. Not used +def plot_data_from_json(filename, trace_num, x_axis, y_axis): + with open(filename, 'r') as file: + tx_data = json.load(file) + print(tx_data[trace_num]['parameter']) + plt.plot(tx_data[trace_num]['offline'][0]['uW']) + plt.xlabel(x_axis) + plt.ylabel(y_axis) + plt.show() + + +def plot_data_vs_mean(signal, x_axis, y_axis): + plt.plot(signal) + average = np.mean(signal) + plt.hlines(average, 0, len(signal)) + plt.xlabel(x_axis) + plt.ylabel(y_axis) + plt.show() + + +def plot_data_vs_data_vs_means(signal1, signal2, x_axis, y_axis): + plt.plot(signal1) + lens = max(len(signal1), len(signal2)) + average = np.mean(signal1) + plt.hlines(average, 0, lens, color='red') + plt.vlines(len(signal1), 0, 100000, color='red', linestyles='dashed') + plt.plot(signal2) + average = np.mean(signal2) + plt.hlines(average, 0, lens, color='green') + plt.vlines(len(signal2), 0, 100000, color='green', linestyles='dashed') + plt.xlabel(x_axis) + plt.ylabel(y_axis) + plt.show() + + +# returns the found changepoints by algo for the specific penalty pen. +# algo should be the return value of Pelt(...).fit(signal) +# Also puts a token in container q to let the progressmeter know the changepoints for penalty pen +# have been calculated. +# used for parallel calculation of changepoints vs penalty +def get_bkps(algo, pen, q): + res = pen, len(algo.predict(pen=pen)) + q.put(pen) + return res + + +# Wrapper for kneedle +def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing'): + kneedle = KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction) + kneepoint = (kneedle.knee, kneedle.knee_y) + return kneepoint + + +# returns the changepoints found on signal with penalty penalty. +# model, jump and min_dist are directly passed to PELT +def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False): + # default params in Function + if model is None: + model = "l1" + if jump is None: + jump = 5 + if min_dist is None: + min_dist = 2 + if plotting is None: + plotting = False + # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30 + # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html + # model = "l1" #"l1" # "l2", "rbf" + algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal) + + if penalty is not None: + bkps = algo.predict(pen=penalty) + if plotting: + fig, ax = rpt.display(signal, bkps) + plt.show() + return bkps + + print_error("No Penalty specified.") + sys.exit(-1) + + +# calculates and returns the necessary penalty for signal. Parallel execution with num_processes many processes +# jump, min_dist are passed directly to PELT. S is directly passed to kneedle. +# pen_modifier is used as a factor on the resulting penalty. +# the interval [range_min, range_max] is used for searching. +# refresh_delay and refresh_thresh are used to configure the progress "bar". +def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, range_max=50, + num_processes=8, refresh_delay=1, refresh_thresh=5, S=1.0, + pen_modifier=None, show_plots=False): + # default params in Function + if model is None: + model = "l1" + if jump is None: + jump = 5 + if min_dist is None: + min_dist = 2 + if range_min is None: + range_min = 0 + if range_max is None: + range_max = 50 + if num_processes is None: + num_processes = 8 + if refresh_delay is None: + refresh_delay = 1 + if refresh_thresh is None: + refresh_thresh = 5 + if S is None: + S = 1.0 + if pen_modifier is None: + pen_modifier = 1 + # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30 + # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html + # model = "l1" #"l1" # "l2", "rbf" + algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal) + + ### CALC BKPS WITH DIFF PENALTYS + if range_max != range_min: + # building args array for parallelizing + args = [] + # for displaying progression + m = Manager() + q = m.Queue() + + for i in range(range_min, range_max + 1): + # same calculation for all except other penalty + args.append((algo, i, q)) + + print_info("starting kneepoint calculation.") + # init Pool with num_proesses + with Pool(min(num_processes, len(args))) as p: + # collect results from pool + result = p.starmap_async(get_bkps, args) + # monitor loop + percentage = -100 # Force display of 0% + i = 0 + while True: + if result.ready(): + break + + size = q.qsize() + last_percentage = percentage + percentage = round(size / (range_max - range_min) * 100, 2) + if percentage >= last_percentage + 2 or i >= refresh_thresh: + print_info("Current progress: " + str(percentage) + "%") + i = 0 + else: + i += 1 + time.sleep(refresh_delay) + res = result.get() + print_info("Finished kneepoint calculation.") + # DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH + # split x and y coords to pass to kneedle + pen_val = [x[0] for x in res] + fitted_bkps_val = [x[1] for x in res] + # # plot to look at res + knee = find_knee_point(pen_val, fitted_bkps_val, S=S) + + # TODO: Find plateau on pen_val vs fitted_bkps_val + # scipy.find_peaks() does not find plateaus if they extend through the end of the data. + # to counter that, add one extremely large value to the right side of the data + # after negating it is extremely small -> Almost certainly smaller than the + # found plateau therefore the plateau does not extend through the border + # -> scipy.find_peaks finds it. Choose value from within that plateau. + # fitted_bkps_val.append(100000000) + # TODO: Approaching over find_peaks might not work if the initial decrease step to the + # "correct" number of changepoints and additional decrease steps e.g. underfitting + # take place within the given penalty interval. find_peak only finds plateaus + # of peaks. If the number of chpts decreases after the wanted plateau the condition + # for local peaks is not satisfied anymore. Therefore this approach will only work + # if the plateau extends over the right border of the penalty interval. + # peaks, peak_plateaus = find_peaks(- np.array(fitted_bkps_val), plateau_size=1) + # Since the data is monotonously decreasing only one plateau can be found. + + # assuming the plateau is constant, i.e. no noise. OK to assume this here, since num_bkpts + # is monotonously decreasing. If the number of bkpts decreases inside a considered + # plateau, it means that the stable configuration is not yet met. -> Search further + start_index = -1 + end_index = -1 + longest_start = -1 + longest_end = -1 + prev_val = -1 + for i, num_bkpts in enumerate(fitted_bkps_val[knee[0]:]): + if num_bkpts != prev_val: + end_index = i - 1 + if end_index - start_index > longest_end - longest_start: + # currently found sequence is the longest found yet + longest_start = start_index + longest_end = end_index + start_index = i + if i == len(fitted_bkps_val[knee[0]:]) - 1: + # end sequence with last value + end_index = i + # # since it is not guaranteed that this is the end of the plateau, assume the mid + # # of the plateau was hit. + # size = end_index - start_index + # end_index = end_index + size + # However this is not the clean solution. Better if search interval is widened + # with range_min and range_max + if end_index - start_index > longest_end - longest_start: + # last found sequence is the longest found yet + longest_start = start_index + longest_end = end_index + start_index = i + prev_val = num_bkpts + if show_plots: + plt.xlabel('Penalty') + plt.ylabel('Number of Changepoints') + plt.plot(pen_val, fitted_bkps_val) + plt.vlines(longest_start + knee[0], 0, max(fitted_bkps_val), linestyles='dashed') + plt.vlines(longest_end + knee[0], 0, max(fitted_bkps_val), linestyles='dashed') + plt.show() + # choosing pen from plateau + mid_of_plat = longest_start + (longest_end - longest_start) // 2 + knee = (mid_of_plat + knee[0], fitted_bkps_val[mid_of_plat + knee[0]]) + + # modify knee according to options. Defaults to 1 * knee + knee = (knee[0] * pen_modifier, knee[1]) + + else: + # range_min == range_max. has the same effect as pen_override + knee = (range_min, None) + print_info(str(knee[0]) + " has been selected as penalty.") + if knee[0] is not None: + return knee + + print_error("With the current thresh-hold S=" + str(S) + + " it is not possible to select a penalty value.") + sys.exit(-1) + + +# calculates the raw_states for measurement measurement. num_measurement is used to identify the +# return value +# penalty, model and jump are directly passed to pelt +def calc_raw_states_func(num_measurement, measurement, penalty, model, jump): + # extract signal + signal = np.array(measurement['uW']) + # norm signal to remove dependency on absolute values + normed_signal = norm_signal(signal) + # calculate the breakpoints + bkpts = calc_pelt(normed_signal, penalty, model=model, jump=jump) + calced_states = list() + start_time = 0 + end_time = 0 + # calc metrics for all states + for bkpt in bkpts: + # start_time of state is end_time of previous one + # (Transitions are instantaneous) + start_time = end_time + end_time = bkpt + power_vals = signal[start_time: end_time] + mean_power = np.mean(power_vals) + std_dev = np.std(power_vals) + calced_state = (start_time, end_time, mean_power, std_dev) + calced_states.append(calced_state) + num = 0 + new_avg_std = 0 + # calc avg std for all states from this measurement + for s in calced_states: + # print_info("State " + str(num) + " starts at t=" + str(s[0]) + # + " and ends at t=" + str(s[1]) + # + " while using " + str(s[2]) + # + "uW with sigma=" + str(s[3])) + num = num + 1 + new_avg_std = new_avg_std + s[3] + # check case if no state has been found to avoid crashing + if len(calced_states) != 0: + new_avg_std = new_avg_std / len(calced_states) + else: + new_avg_std = 0 + change_avg_std = measurement['uW_std'] - new_avg_std + # print_info("The average standard deviation for the newly found states is " + # + str(new_avg_std)) + # print_info("That is a reduction of " + str(change_avg_std)) + return num_measurement, calced_states, new_avg_std, change_avg_std + + +# parallelize calc over all measurements +def calc_raw_states(arg_list, num_processes=8): + m = Manager() + with Pool(processes=min(num_processes, len(arg_list))) as p: + # collect results from pool + result = p.starmap(calc_raw_states_func, arg_list) + return result + + +# Very short benchmark yielded approx. 3 times the speed of solution not using sort +# checks the percentiles if refinement is necessary +def needs_refinement(signal, thresh): + sorted_signal = sorted(signal) + length_of_signal = len(signal) + percentile_size = int() + percentile_size = length_of_signal // 100 + lower_percentile = sorted_signal[0:percentile_size] + upper_percentile = sorted_signal[length_of_signal - percentile_size: length_of_signal] + lower_percentile_mean = np.mean(lower_percentile) + upper_percentile_mean = np.mean(upper_percentile) + median = np.median(sorted_signal) + dist = median - lower_percentile_mean + if dist > thresh: + return True + dist = upper_percentile_mean - median + if dist > thresh: + return True + return False + +# helper functions for user output +# TODO: maybe switch with python logging feature +def print_info(str_to_prt): + str_lst = str_to_prt.split(sep='\n') + for str_prt in str_lst: + print("[INFO]" + str_prt) + + +def print_warning(str_to_prt): + str_lst = str_to_prt.split(sep='\n') + for str_prt in str_lst: + print("[WARNING]" + str_prt) + + +def print_error(str_to_prt): + str_lst = str_to_prt.split(sep='\n') + for str_prt in str_lst: + print("[ERROR]" + str_prt, file=sys.stderr) + + +# norms the signal and apply scaler to all values as a factor +def norm_signal(signal, scaler=25): + max_val = max(signal) + normed_signal = np.zeros(shape=len(signal)) + for i, signal_i in enumerate(signal): + normed_signal[i] = signal_i / max_val + normed_signal[i] = normed_signal[i] * scaler + return normed_signal + + +# norms the values to prepare them for clustering +def norm_values_to_cluster(values_to_cluster): + new_vals = np.array(values_to_cluster) + num_samples = len(values_to_cluster) + num_params = len(values_to_cluster[0]) + for i in range(num_params): + param_vals = [] + for sample in new_vals: + param_vals.append(sample[i]) + max_val = np.max(np.abs(param_vals)) + for num_sample, sample in enumerate(new_vals): + values_to_cluster[num_sample][i] = sample[i] / max_val + return new_vals + + +# finds state_num using state name +def get_state_num(state_name, distinct_states): + for state_num, states in enumerate(distinct_states): + if state_name in states: + return state_num + return -1 + + +if __name__ == '__main__': + # OPTION RECOGNITION + opt = dict() + + optspec = ( + "filename= " + "v " + "model= " + "jump= " + "min_dist= " + "range_min= " + "range_max= " + "num_processes= " + "refresh_delay= " + "refresh_thresh= " + "S= " + "pen_override= " + "pen_modifier= " + "plotting= " + "refinement_thresh= " + "cache_dicts " + "cache_loc= " + ) + opt_filename = None + opt_verbose = False + opt_model = None + opt_jump = None + opt_min_dist = None + opt_range_min = None + opt_range_max = None + opt_num_processes = cpu_count() + opt_refresh_delay = None + opt_refresh_thresh = None + opt_S = None + opt_pen_override = None + opt_pen_modifier = None + opt_plotting = False + opt_refinement_thresh = None + opt_cache_loc = None + try: + raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" ")) + + for option, parameter in raw_opts: + optname = re.sub(r"^--", "", option) + opt[optname] = parameter + + if 'filename' not in opt: + print_error("No file specified!") + sys.exit(-1) + else: + opt_filename = opt['filename'] + if 'v' in opt: + opt_verbose = True + opt_plotting = True + if 'model' in opt: + opt_model = opt['model'] + if 'jump' in opt: + try: + opt_jump = int(opt['jump']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'min_dist' in opt: + try: + opt_min_dist = int(opt['min_dist']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'range_min' in opt: + try: + opt_range_min = int(opt['range_min']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'range_max' in opt: + try: + opt_range_max = int(opt['range_max']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'num_processes' in opt: + try: + opt_num_processes = int(opt['num_processes']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'refresh_delay' in opt: + try: + opt_refresh_delay = int(opt['refresh_delay']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'refresh_thresh' in opt: + try: + opt_refresh_thresh = int(opt['refresh_thresh']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'S' in opt: + try: + opt_S = float(opt['S']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'pen_override' in opt: + try: + opt_pen_override = int(opt['pen_override']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'pen_modifier' in opt: + try: + opt_pen_modifier = float(opt['pen_modifier']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'refinement_thresh' in opt: + try: + opt_refinement_thresh = int(opt['refinement_thresh']) + except ValueError as verr: + print(verr, file=sys.stderr) + sys.exit(-1) + if 'cache_dicts' in opt: + if 'cache_loc' in opt: + opt_cache_loc = opt['cache_loc'] + else: + print_error("If \"cache_dicts\" is set, \"cache_loc\" must be provided.") + sys.exit(-1) + except getopt.GetoptError as err: + print(err, file=sys.stderr) + sys.exit(-1) + filepath = os.path.dirname(opt_filename) + # OPENING DATA + if ".json" in opt_filename: + # open file with trace data from json + print_info( + "Will only refine the state which is present in " + opt_filename + " if necessary.") + with open(opt_filename, 'r') as f: + configurations = json.load(f) + + # for i in range(0, 7): + # signal = np.array(configurations[i]['offline'][0]['uW']) + # plt.plot(signal) + # plt.xlabel('Time [us]') + # plt.ylabel('Power [mW]') + # plt.show() + # sys.exit() + + # resulting_sequence_list = [] + # search for param_names, by_param and by_name files + # cachingopts + by_param_file = None + by_name_file = None + param_names_file = None + from_cache = False + not_accurate = False + if opt_cache_loc is not None: + flag = False + by_name_loc = os.path.join(opt_cache_loc, "by_name.txt") + by_param_loc = os.path.join(opt_cache_loc, "by_param.txt") + param_names_loc = os.path.join(opt_cache_loc, "param_names.txt") + if os.path.isfile(by_name_loc) and os.path.getsize(by_name_loc) > 0: + by_name_file = open(by_name_loc, "r") + else: + print_error("In " + opt_cache_loc + " is no by_name.txt.") + flag = True + if os.path.isfile(by_param_loc) and os.path.getsize(by_param_loc) > 0: + by_param_file = open(by_param_loc, "r") + else: + print_error("In " + opt_cache_loc + " is no by_param.txt.") + flag = True + if os.path.isfile(param_names_loc) and os.path.getsize(param_names_loc) > 0: + param_names_file = open(param_names_loc, "r") + else: + print_error("In " + opt_cache_loc + " is no param_names.txt.") + flag = True + if flag: + print_info("The cache will be build.") + else: + print_warning("THE OPTION \"cache_dicts\" IS FOR DEBUGGING PURPOSES ONLY! " + "\nDO NOT USE FOR REGULAR APPLICATIONS!" + "\nThis will possibly not be maintained in further development.") + from_cache = True + big_state_name = configurations[0]['name'] + if None in (by_param_file, by_name_file, param_names_file): + state_durations_by_config = [] + state_consumptions_by_config = [] + # loop through all traces check if refinement is necessary and if necessary refine it. + for num_config, measurements_by_config in enumerate(configurations): + # loop through all occurrences of the looked at state + print_info("Looking at state '" + measurements_by_config['name'] + "' with params: " + + str(measurements_by_config['parameter']) + "(" + str( + num_config + 1) + "/" + + str(len(configurations)) + ")") + num_needs_refine = 0 + print_info("Checking if refinement is necessary...") + for measurement in measurements_by_config['offline']: + # loop through measurements of particular state + # an check if state needs refinement + signal = measurement['uW'] + # mean = measurement['uW_mean'] + if needs_refinement(signal, opt_refinement_thresh): + num_needs_refine = num_needs_refine + 1 + if num_needs_refine == 0: + print_info( + "No refinement necessary for state '" + measurements_by_config['name'] + + "' with params: " + str(measurements_by_config['parameter'])) + elif num_needs_refine < len(measurements_by_config['offline']) / 2: + print_info( + "No refinement necessary for state '" + measurements_by_config['name'] + + "' with params: " + str(measurements_by_config['parameter'])) + print_warning( + "However this decision was not unanimously. This could hint a poor" + "measurement quality.") + else: + if num_needs_refine != len(measurements_by_config['parameter']): + print_warning( + "However this decision was not unanimously. This could hint a poor" + "measurement quality.") + # assume that all measurements of the same param configuration are fundamentally + # similar -> calculate penalty for first measurement, use it for all + if opt_pen_override is None: + signal = np.array(measurements_by_config['offline'][0]['uW']) + normed_signal = norm_signal(signal) + penalty = calculate_penalty_value(normed_signal, model=opt_model, + range_min=opt_range_min, + range_max=opt_range_max, + num_processes=opt_num_processes, + jump=opt_jump, S=opt_S, + pen_modifier=opt_pen_modifier) + penalty = penalty[0] + else: + penalty = opt_pen_override + # build arguments for parallel excecution + print_info("Starting raw_states calculation.") + raw_states_calc_args = [] + for num_measurement, measurement in enumerate( + measurements_by_config['offline']): + raw_states_calc_args.append((num_measurement, measurement, penalty, + opt_model, opt_jump)) + + raw_states_list = [None] * len(measurements_by_config['offline']) + raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes) + # extracting result and putting it in correct order -> index of raw_states_list + # entry still corresponds with index of measurement in measurements_by_states + # -> If measurements are discarded the used ones are easily recognized + for ret_val in raw_states_res: + num_measurement = ret_val[0] + raw_states = ret_val[1] + avg_std = ret_val[2] + change_avg_std = ret_val[3] + # FIXME: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch + # int sein oder nicht? Es scheint auch vernünftig zu klappen... + raw_states_list[num_measurement] = raw_states + print_info("The average standard deviation for the newly found states in " + + "measurement No. " + str(num_measurement) + " is " + + str(avg_std)) + print_info("That is a reduction of " + str(change_avg_std)) + # l_signal = measurements_by_config['offline'][num_measurement]['uW'] + # l_bkpts = [s[1] for s in raw_states] + # fig, ax = rpt.display(np.array(l_signal), l_bkpts) + # plt.show() + print_info("Finished raw_states calculation.") + num_states_array = [int()] * len(raw_states_list) + i = 0 + for i, x in enumerate(raw_states_list): + num_states_array[i] = len(x) + avg_num_states = np.mean(num_states_array) + num_states_dev = np.std(num_states_array) + print_info("On average " + str(avg_num_states) + + " States have been found. The standard deviation" + + " is " + str(num_states_dev)) + # TODO: MAGIC NUMBER + if num_states_dev > 1: + print_warning("The number of states varies strongly across measurements." + " Consider choosing a larger range for penalty detection." + " It is also possible, that the processed data is not accurate" + " enough to produce proper results.") + time.sleep(5) + # TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist? + # Einfach Durchschnitt nehmen? + # Preliminary decision: Further on only use the traces, which have the most + # frequent state count + counts = np.bincount(num_states_array) + num_raw_states = np.argmax(counts) + print_info("Choose " + str(num_raw_states) + " as number of raw_states.") + if num_raw_states == 1: + print_info( + "Upon further inspection it is clear that no refinement is necessary." + " The macromodel is usable for this configuration.") + continue + # iterate through all found breakpoints and determine start and end points as well + # as power consumption + num_measurements = len(raw_states_list) + states_duration_list = [list()] * num_raw_states + states_consumption_list = [list()] * num_raw_states + for num_elem, _ in enumerate(states_duration_list): + states_duration_list[num_elem] = [0] * num_measurements + states_consumption_list[num_elem] = [0] * num_measurements + num_used_measurements = 0 + for num_measurement, raw_states in enumerate(raw_states_list): + if len(raw_states) == num_raw_states: + num_used_measurements = num_used_measurements + 1 + for num_state, s in enumerate(raw_states): + states_duration_list[num_state][num_measurement] = s[1] - s[0] + states_consumption_list[num_state][num_measurement] = s[2] + # calced_state = (start_time, end_time, mean_power, std_dev) + # for num_state, s in enumerate(raw_states): + # state_duration = s[1] - s[0] + # state_consumption = s[2] + # states_duration_list[num_state] = \ + # states_duration_list[num_state] + state_duration + # states_consumption_list[num_state] = \ + # states_consumption_list[num_state] + state_consumption + else: + print_info("Discarding measurement No. " + str(num_measurement) + + " because it did not recognize the number of " + "raw_states correctly.") + # l_signal = measurements_by_config['offline'][num_measurement]['uW'] + # l_bkpts = [s[1] for s in raw_states] + # fig, ax = rpt.display(np.array(l_signal), l_bkpts) + # plt.show() + # for i, x in enumerate(states_duration_list): + # states_duration_list[i] = x / num_used_measurements + # for i, x in enumerate(states_consumption_list): + # states_consumption_list[i] = x / num_used_measurements + if num_used_measurements != len(raw_states_list): + if num_used_measurements / len(raw_states_list) <= 0.5: + print_warning("Only used " + str(num_used_measurements) + "/" + + str(len(raw_states_list)) + + " Measurements for refinement. " + + "Others did not recognize number of states correctly." + + "\nYou should verify the integrity of the measurements.") + else: + print_info("Used " + str(num_used_measurements) + "/" + + str(len(raw_states_list)) + " Measurements for refinement." + + " Others did not recognize number of states correctly.") + num_used_measurements = i + else: + print_info("Used all available measurements.") + + state_durations_by_config.append((num_config, states_duration_list)) + state_consumptions_by_config.append((num_config, states_consumption_list)) + + # combine all state durations and consumptions to parametrized model + if len(state_durations_by_config) == 0: + print("No refinement necessary for this state. The macromodel is usable.") + sys.exit(1) + if len(state_durations_by_config) / len(configurations) > 1 / 2 \ + and len(state_durations_by_config) != len(configurations): + print_warning( + "Some measurements(>50%) need to be refined, however that is not true for" + " all measurements. This hints a correlation between the structure of" + " the underlying automaton and parameters. Only the ones which need to" + " be refined will be refined. THE RESULT WILL NOT ACCURATELY DEPICT " + " THE REAL WORLD.") + not_accurate = True + if len(state_durations_by_config) / len(configurations) < 1 / 2: + print_warning( + "Some measurements(<50%) need to be refined, however that is not true for" + " all measurements. This hints a correlation between the structure of" + " the underlying automaton and parameters. Or a poor quality of measurements." + " No Refinement will be done.") + sys.exit(-1) + # this is only necessary because at this state only linear automatons can be modeled. + num_states_array = [int()] * len(state_consumptions_by_config) + for i, (_, states_consumption_list) in enumerate(state_consumptions_by_config): + num_states_array[i] = len(states_consumption_list) + counts = np.bincount(num_states_array) + num_raw_states = np.argmax(counts) + usable_configs = len(state_consumptions_by_config) + # param_list identical for each raw_state + param_list = [] + param_names = configurations[0]['offline_aggregates']['paramkeys'][0] + print_info("param_names: " + str(param_names)) + for num_config, states_consumption_list in state_consumptions_by_config: + if len(states_consumption_list) != num_raw_states: + print_warning( + "Config No." + str(num_config) + " not usable yet due to different " + + "number of states. This hints a correlation between parameters and " + + "the structure of the resulting automaton. This will be possibly" + + " supported in a future version of this tool. HOWEVER AT THE MOMENT" + " THIS WILL LEAD TO INACCURATE RESULTS!") + not_accurate = True + usable_configs = usable_configs - 1 + else: + param_list.extend(configurations[num_config]['offline_aggregates']['param']) + print_info("param_list: " + str(param_list)) + + if usable_configs == len(state_consumptions_by_config): + print_info("All configs usable.") + else: + print_info("Using only " + str(usable_configs) + " Configs.") + # build by_name + by_name = {} + usable_configs_2 = len(state_consumptions_by_config) + for i in range(num_raw_states): + consumptions_for_state = [] + durations_for_state = [] + for j, (_, states_consumption_list) in enumerate(state_consumptions_by_config): + if len(states_consumption_list) == num_raw_states: + consumptions_for_state.extend(states_consumption_list[i]) + durations_for_state.extend(state_durations_by_config[j][1][i]) + else: + not_accurate = True + usable_configs_2 = usable_configs_2 - 1 + if usable_configs_2 != usable_configs: + print_error("an zwei unterschiedlichen Stellen wurden unterschiedlich viele " + "Messungen rausgeworfen. Bei Janis beschweren.") + state_name = "state_" + str(i) + state_dict = { + "param": param_list, + "power": consumptions_for_state, + "duration": durations_for_state, + "attributes": ["power", "duration"], + # Da kein "richtiger" Automat generiert wird, gibt es auch keine Transitionen + "isa": "state" + } + by_name[state_name] = state_dict + by_param = by_name_to_by_param(by_name) + if opt_cache_loc is not None: + by_name_loc = os.path.join(opt_cache_loc, "by_name.txt") + by_param_loc = os.path.join(opt_cache_loc, "by_param.txt") + param_names_loc = os.path.join(opt_cache_loc, "param_names.txt") + f = open(by_name_loc, "w") + f.write(str(by_name)) + f.close() + f = open(by_param_loc, "w") + f.write(str(by_param)) + f.close() + f = open(param_names_loc, "w") + f.write(str(param_names)) + f.close() + else: + by_name_text = str(by_name_file.read()) + by_name = eval(by_name_text) + by_param_text = str(by_param_file.read()) + by_param = eval(by_param_text) + param_names_text = str(param_names_file.read()) + param_names = eval(param_names_text) + + # t = 0 + # last_pow = 0 + # for key in by_name.keys(): + # end_t = t + np.mean(by_name[key]["duration"]) + # power = np.mean(by_name[key]["power"]) + # plt.vlines(t, min(last_pow, power), max(last_pow, power)) + # plt.hlines(power, t, end_t) + # t = end_t + # last_pow = power + # plt.show() + stats = parameters.ParamStats(by_name, by_param, param_names, dict()) + paramfit = ParallelParamFit(by_param) + for state_name in by_name.keys(): + for num_param, param_name in enumerate(param_names): + if stats.depends_on_param(state_name, "power", param_name): + paramfit.enqueue(state_name, "power", num_param, param_name) + if stats.depends_on_param(state_name, "duration", param_name): + paramfit.enqueue(state_name, "duration", num_param, param_name) + print_info("State " + state_name + "s power depends on param " + param_name + ":" + + str(stats.depends_on_param(state_name, "power", param_name)) + ) + print_info("State " + state_name + "s duration depends on param " + param_name + ":" + + str(stats.depends_on_param(state_name, "duration", param_name)) + ) + paramfit.fit() + fit_res_dur_dict = {} + fit_res_pow_dict = {} + # fit functions and check if successful + for state_name in by_name.keys(): + fit_power = paramfit.get_result(state_name, "power") + fit_duration = paramfit.get_result(state_name, "duration") + combined_fit_power = analytic.function_powerset(fit_power, param_names, 0) + combined_fit_duration = analytic.function_powerset(fit_duration, param_names, 0) + combined_fit_power.fit(by_param, state_name, "power") + if not combined_fit_power.fit_success: + print_warning("Fitting(power) for state " + state_name + " was not succesful!") + combined_fit_duration.fit(by_param, state_name, "duration") + if not combined_fit_duration.fit_success: + print_warning("Fitting(duration) for state " + state_name + " was not succesful!") + fit_res_pow_dict[state_name] = combined_fit_power + fit_res_dur_dict[state_name] = combined_fit_duration + # only raw_states with the same number of function parameters can be similar + num_param_pow_dict = {} + num_param_dur_dict = {} + # print found substate_results + for state_name in by_name.keys(): + model_function = str(fit_res_pow_dict[state_name].model_function) + model_args = fit_res_pow_dict[state_name].model_args + num_param_pow_dict[state_name] = len(model_args) + for num_arg, arg in enumerate(model_args): + replace_string = "regression_arg(" + str(num_arg) + ")" + model_function = model_function.replace(replace_string, str(arg)) + print_info("Power-Function for state " + state_name + ": " + + model_function) + for state_name in by_name.keys(): + model_function = str(fit_res_dur_dict[state_name].model_function) + model_args = fit_res_dur_dict[state_name].model_args + num_param_dur_dict[state_name] = len(model_args) + for num_arg, arg in enumerate(model_args): + replace_string = "regression_arg(" + str(num_arg) + ")" + model_function = model_function.replace(replace_string, str(arg)) + print_info("Duration-Function for state " + state_name + ": " + + model_function) + # sort states in buckets for clustering + similar_raw_state_buckets = {} + for state_name in by_name.keys(): + pow_model_function = str(fit_res_pow_dict[state_name].model_function) + dur_model_function = str(fit_res_dur_dict[state_name].model_function) + key_tuple = (pow_model_function, dur_model_function) + if key_tuple not in similar_raw_state_buckets: + similar_raw_state_buckets[key_tuple] = [] + similar_raw_state_buckets[key_tuple].append(state_name) + + # cluster for each Key-Tuple using the function parameters + distinct_states = [] + for key_tuple in similar_raw_state_buckets.keys(): + print_info("Key-Tuple " + str(key_tuple) + ": " + + str(similar_raw_state_buckets[key_tuple])) + similar_states = similar_raw_state_buckets[key_tuple] + if len(similar_states) > 1: + # only necessary to cluster if more than one raw_state has the same function + # configuration + # functions are identical -> num_params and used params are identical + num_params = num_param_dur_dict[similar_states[0]] + num_param_pow_dict[ + similar_states[0]] + values_to_cluster = np.zeros((len(similar_states), num_params)) + for num_state, state_name in enumerate(similar_states): + dur_params = fit_res_dur_dict[state_name].model_args + pow_params = fit_res_pow_dict[state_name].model_args + j = 0 + for param in pow_params: + values_to_cluster[num_state][j] = param + j = j + 1 + for param in dur_params: + values_to_cluster[num_state][j] = param + j = j + 1 + normed_vals_to_cluster = norm_values_to_cluster(values_to_cluster) + cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, + affinity='euclidean', + linkage='ward', + # TODO: Magic Number. Beim Evaluieren finetunen + distance_threshold=1) + cluster.fit_predict(values_to_cluster) + cluster_labels = cluster.labels_ + print_info("Cluster labels:\n" + str(cluster_labels)) + if cluster.n_clusters_ > 1: + # more than one distinct state found -> seperation of raw_states necessary + distinct_state_dict = {} + for num_state, label in enumerate(cluster_labels): + if label not in distinct_state_dict.keys(): + distinct_state_dict[label] = [] + distinct_state_dict[label].append(similar_states[num_state]) + for distinct_state_key in distinct_state_dict.keys(): + distinct_states.append(distinct_state_dict[distinct_state_key]) + else: + # all raw_states make up this state + distinct_states.append(similar_states) + else: + distinct_states.append(similar_states) + for num_state, distinct_state in enumerate(distinct_states): + print("State " + str(num_state) + ": " + str(distinct_state)) + num_raw_states = len(by_name.keys()) + resulting_sequence = [int] * num_raw_states + for i in range(num_raw_states): + # apply the projection from raw_states to states + state_name = "state_" + str(i) + state_num = get_state_num(state_name, distinct_states) + if state_num == -1: + print_error("Critical Error when creating the resulting sequence. raw_state state_" + + str(i) + " could not be mapped to a state.") + sys.exit(-1) + resulting_sequence[i] = state_num + print("Resulting sequence is: " + str(resulting_sequence)) + # if from_cache: + # print_warning( + # "YOU USED THE OPTION \"cache_dicts\". THIS IS FOR DEBUGGING PURPOSES ONLY!" + # "\nTHE SCRIPT WILL NOW STOP PREMATURELY," + # "SINCE DATA FOR FURTHER COMPUTATION IS MISSING!") + # sys.exit(0) + # parameterize all new states + new_by_name = {} + for num_state, distinct_state in enumerate(distinct_states): + state_name = "State_" + str(num_state) + consumptions_for_state = [] + durations_for_state = [] + param_list = [] + for raw_state in distinct_state: + original_state_dict = by_name[raw_state] + param_list.extend(original_state_dict["param"]) + consumptions_for_state.extend(original_state_dict["power"]) + durations_for_state.extend(original_state_dict["duration"]) + new_state_dict = { + "param": param_list, + "power": consumptions_for_state, + "duration": durations_for_state, + "attributes": ["power", "duration"], + # Da kein richtiger Automat generiert wird, gibt es auch keine Transitionen + "isa": "state" + } + new_by_name[state_name] = new_state_dict + new_by_param = by_name_to_by_param(new_by_name) + new_stats = parameters.ParamStats(new_by_name, new_by_param, param_names, dict()) + new_paramfit = ParallelParamFit(new_by_param) + for state_name in new_by_name.keys(): + for num_param, param_name in enumerate(param_names): + if new_stats.depends_on_param(state_name, "power", param_name): + new_paramfit.enqueue(state_name, "power", num_param, param_name) + if new_stats.depends_on_param(state_name, "duration", param_name): + new_paramfit.enqueue(state_name, "duration", num_param, param_name) + print_info("State " + state_name + "s power depends on param " + param_name + ":" + + str(new_stats.depends_on_param(state_name, "power", param_name)) + ) + print_info("State " + state_name + "s duration depends on param " + param_name + ":" + + str(new_stats.depends_on_param(state_name, "duration", param_name)) + ) + new_paramfit.fit() + new_fit_res_dur_dict = {} + new_fit_res_pow_dict = {} + for state_name in new_by_name.keys(): + fit_power = new_paramfit.get_result(state_name, "power") + fit_duration = new_paramfit.get_result(state_name, "duration") + combined_fit_power = analytic.function_powerset(fit_power, param_names, 0) + combined_fit_duration = analytic.function_powerset(fit_duration, param_names, 0) + combined_fit_power.fit(new_by_param, state_name, "power") + if not combined_fit_power.fit_success: + print_warning("Fitting(power) for state " + state_name + " was not succesful!") + combined_fit_duration.fit(new_by_param, state_name, "duration") + if not combined_fit_duration.fit_success: + print_warning("Fitting(duration) for state " + state_name + " was not succesful!") + new_fit_res_pow_dict[state_name] = combined_fit_power + new_fit_res_dur_dict[state_name] = combined_fit_duration + # output results + result_loc = os.path.join(filepath, "result" + big_state_name + ".txt") + with open(result_loc, "w") as f: + f.write("Resulting Sequence: " + str(resulting_sequence)) + f.write("\n\n") + for state_name in new_by_name.keys(): + model_function = str(new_fit_res_pow_dict[state_name].model_function) + model_args = new_fit_res_pow_dict[state_name].model_args + for num_arg, arg in enumerate(model_args): + replace_string = "regression_arg(" + str(num_arg) + ")" + model_function = model_function.replace(replace_string, str(arg)) + print("Power-Function for state " + state_name + ": " + + model_function) + f.write("Power-Function for state " + state_name + ": " + + model_function + "\n") + f.write("\n\n") + for state_name in new_by_name.keys(): + model_function = str(new_fit_res_dur_dict[state_name].model_function) + model_args = new_fit_res_dur_dict[state_name].model_args + for num_arg, arg in enumerate(model_args): + replace_string = "regression_arg(" + str(num_arg) + ")" + model_function = model_function.replace(replace_string, str(arg)) + print("Duration-Function for state " + state_name + ": " + + model_function) + f.write("Duration-Function for state " + state_name + ": " + + model_function + "\n") + if not_accurate: + print_warning( + "THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING" + " WHY.") + f.write("THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING" + " WHY.") + + # Removed clustering at this point, since it provided too much difficulties + # at the current state. Clustering is still used, but at another point of execution. + # Now parametrization is done first. raw_states are grouped by their using a dict + # where the key is [power_function, duration_dunction]. Then all raw_states from + # each bucket are clustered by their parameters + # i = 0 + # cluster_labels_list = [] + # num_cluster_list = [] + # for num_trace, raw_states in enumerate(raw_states_list): + # # iterate through raw states from measurements + # if len(raw_states) == num_raw_states: + # # build array with power values to cluster these + # value_to_cluster = np.zeros((num_raw_states, 2)) + # j = 0 + # for s in raw_states: + # value_to_cluster[j][0] = s[2] + # value_to_cluster[j][1] = 0 + # j = j + 1 + # # linked = linkage(value_to_cluster, 'single') + # # + # # labelList = range(1, 11) + # # + # # plt.figure(figsize=(10, 7)) + # # dendrogram(linked, + # # orientation='top', + # # distance_sort='descending', + # # show_leaf_counts=True) + # # plt.show() + # # TODO: Automatic detection of number of clusters. Aktuell noch MAGIC NUMBER + # # im distance_threshold + # cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, + # affinity='euclidean', + # linkage='ward', + # distance_threshold=opt_refinement_thresh * 100) + # # cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', + # # linkage='ward') + # cluster.fit_predict(value_to_cluster) + # # print_info("Cluster labels:\n" + str(cluster.labels_)) + # # plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow') + # # plt.show() + # cluster_labels_list.append((num_trace, cluster.labels_)) + # num_cluster_list.append((num_trace, cluster.n_clusters_)) + # i = i + 1 + # else: + # print_info("Discarding measurement No. " + str(num_trace) + " because it " + # + "did not recognize the number of raw_states correctly.") + # num_used_measurements = len(raw_states_list) + # if i != len(raw_states_list): + # if i / len(raw_states_list) <= 0.5: + # print_warning("Only used " + str(i) + "/" + str(len(raw_states_list)) + # + " Measurements for refinement. " + # "Others did not recognize number of states correctly." + # "\nYou should verify the integrity of the measurements.") + # else: + # print_info("Used " + str(i) + "/" + str(len(raw_states_list)) + # + " Measurements for refinement. " + # "Others did not recognize number of states correctly.") + # num_used_measurements = i + # # TODO: DEBUG Kram + # sys.exit(0) + # else: + # print_info("Used all available measurements.") + # + # num_states = np.argmax(np.bincount([elem[1] for elem in num_cluster_list])) + # avg_per_state_list = [None] * len(cluster_labels_list) + # used_clusters = 0 + # for number, (num_trace, labels) in enumerate(cluster_labels_list): + # if num_cluster_list[number][1] == num_states: + # avg_per_state = [0] * num_states + # count_per_state = [0] * num_states + # raw_states = raw_states_list[num_trace] + # for num_label, label in enumerate(labels): + # count_per_state[label] = count_per_state[label] + 1 + # avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2] + # for i, _ in enumerate(avg_per_state): + # avg_per_state[i] = avg_per_state[i] / count_per_state[i] + # avg_per_state_list[number] = avg_per_state + # used_clusters = used_clusters + 1 + # else: + # # hopefully this does not happen regularly + # print_info("Discarding measurement " + str(number) + # + " because the clustering yielded not matching results.") + # num_used_measurements = num_used_measurements - 1 + # if num_used_measurements == 0: + # print_error("Something went terribly wrong. Discarded all measurements.") + # # continue + # sys.exit(-1) + # # flattend version for clustering: + # values_to_cluster = np.zeros((num_states * used_clusters, 2)) + # index = 0 + # for avg_per_state in avg_per_state_list: + # if avg_per_state is not None: + # for avg in avg_per_state: + # values_to_cluster[index][0] = avg + # values_to_cluster[index][1] = 0 + # index = index + 1 + # # plt.scatter(values_to_cluster[:, 0], values_to_cluster[:, 1]) + # # plt.show() + # cluster = AgglomerativeClustering(n_clusters=num_states) + # cluster.fit_predict(values_to_cluster) + # # Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die + # # ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels. + # # Alle identischen Zustände haben identische Labels. Dann vllt bei resulting + # # sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist. + # new_labels_list = [] + # new_labels = [] + # i = 0 + # for label in cluster.labels_: + # new_labels.append(label) + # i = i + 1 + # if i == num_states: + # new_labels_list.append(new_labels) + # new_labels = [] + # i = 0 + # # only the selected measurements are present in new_labels. + # # new_labels_index should not be incremented, if not selected_measurement is skipped + # new_labels_index = 0 + # # cluster_labels_list contains all measurements -> if measurement is skipped + # # still increment the index + # index = 0 + # for elem in avg_per_state_list: + # if elem is not None: + # for number, label in enumerate(cluster_labels_list[index][1]): + # cluster_labels_list[index][1][number] = \ + # new_labels_list[new_labels_index][label] + # new_labels_index = new_labels_index + 1 + # else: + # # override not selected measurement labels to avoid choosing the wrong ones. + # for number, label in enumerate(cluster_labels_list[index][1]): + # cluster_labels_list[index][1][number] = -1 + # index = index + 1 + # resulting_sequence = [None] * num_raw_states + # i = 0 + # confidence = 0 + # for x in resulting_sequence: + # j = 0 + # test_list = [] + # for arr in [elem[1] for elem in cluster_labels_list]: + # if num_cluster_list[j][1] != num_states: + # j = j + 1 + # else: + # if -1 in arr: + # print_error("Bei Janis beschweren! Fehler beim Umbenennen der" + # " Zustände wahrscheinlich.") + # sys.exit(-1) + # test_list.append(arr[i]) + # j = j + 1 + # bincount = np.bincount(test_list) + # resulting_sequence[i] = np.argmax(bincount) + # confidence = confidence + bincount[resulting_sequence[i]] / np.sum(bincount) + # i = i + 1 + # confidence = confidence / len(resulting_sequence) + # print_info("Confidence of resulting sequence is " + str(confidence) + # + " while using " + str(num_used_measurements) + "/" + # + str(len(raw_states_list)) + " measurements.") + # #print(resulting_sequence) + # resulting_sequence_list.append((num_config, resulting_sequence)) + # # TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat + # # erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die + # # Loops. Wie erkenne ich die? Es können beliebig viele Loops an beliebigen Stellen + # # auftreten. + # # TODO: Die Zustandsfolgen werden sich nicht einfach in isomorphe(-einzelne wegfallende bzw. + # # hinzukommende Zustände) Automaten übersetzten lassen. Basiert alles auf dem Problem: + # # wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche + # # Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme, + # # 2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines + # # Zustands ja nicht mehr ändern. Kann sicherlich immernoch Falschclustering erzeugen... + # for num_config, sequence in resulting_sequence_list: + # print_info("NO. config:" + str(num_config)) + # print_info(sequence) + # + # + # + # + + elif ".tar" in opt_filename: + # open with dfatool + raw_data_args = list() + raw_data_args.append(opt_filename) + raw_data = RawData( + raw_data_args, with_traces=True + ) + print_info("Preprocessing file. Depending on its size, this could take a while.") + preprocessed_data = raw_data.get_preprocessed_data() + print_info("File fully preprocessed") + # TODO: Mal schauen, wie ich das mache. Erstmal nur mit json. Ist erstmal raus. Wird nicht + # umgesetzt. + print_error("Not implemented yet. Please generate .json files first with dfatool and use" + " those.") + else: + print_error("Unknown dataformat") + sys.exit(-1)
\ No newline at end of file diff --git a/bin/plot_generator.py b/bin/plot_generator.py new file mode 100644 index 0000000..458271d --- /dev/null +++ b/bin/plot_generator.py @@ -0,0 +1,123 @@ +import getopt +import sys +import re +import os +import numpy as np +import pprint +import json +import matplotlib.pyplot as plt + +if __name__ == '__main__': + # OPTION RECOGNITION + opt = dict() + + optspec = ( + "bench_filename= " + "result_filename= " + ) + opt_bench_filename = None + opt_result_filename = None + try: + raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" ")) + + for option, parameter in raw_opts: + optname = re.sub(r"^--", "", option) + opt[optname] = parameter + except getopt.GetoptError as err: + print(err, file=sys.stderr) + sys.exit(-1) + + if "bench_filename" in opt: + opt_bench_filename = opt['bench_filename'] + else: + + sys.exit(-1) + if "result_filename" in opt: + opt_result_filename = opt['result_filename'] + else: + print("wth") + sys.exit(-1) + + with open(opt_bench_filename, 'r') as f: + configurations = json.load(f) + with open(opt_result_filename, 'r') as f: + sequence_line = f.readline() + begin_sequence = sequence_line.rfind("Resulting Sequence: ") + 20 + + if begin_sequence < 20: + print("nicht gefunden!") + sys.exit(-1) + sequence_substr = sequence_line[begin_sequence:] + resulting_sequence = eval(sequence_substr) + new_line = f.readline() + while new_line == "\n": + new_line = f.readline() + function_line = new_line + pow_function_dict = dict() + while function_line != "\n": + state_name_pos = function_line.find("Power-Function for state ") + 25 + state_name_end = function_line.find(":") + state_name = function_line[state_name_pos:state_name_end] + function_string = function_line[state_name_end+1:-1] + pow_function_dict[state_name] = function_string + function_line = f.readline() + new_line = "\n" + while new_line == "\n": + new_line = f.readline() + function_line = new_line + dur_function_dict = dict() + while function_line != "\n" and function_line != "" and "THIS RESULT IS NOT ACCURATE." not in function_line: + state_name_pos = function_line.find("Duration-Function for state ") + 28 + state_name_end = function_line.find(":") + state_name = function_line[state_name_pos:state_name_end] + function_string = function_line[state_name_end+1:-1] + dur_function_dict[state_name] = function_string + function_line = f.readline() + + param_names = configurations[0]['offline_aggregates']['paramkeys'][0] + + for num_fig in range(0, min(4, len(configurations))): + rand_config_no = np.random.randint(0, len(configurations), 1)[0] + rand_conf = configurations[rand_config_no] + rand_signal = np.array(rand_conf['offline'][0]['uW']) + rand_param = rand_conf['offline_aggregates']['param'][0] + rand_max_pow = max(rand_signal) + # pprint.pprint(rand_param) + pretty_rand_param = pprint.pformat(rand_param) + print(str(param_names) + "(" + str(rand_config_no) + ")" + "\n" + pretty_rand_param) + time = 0 + next_time = 0 + rand_stepper = 0 + pow = 0 + resulting_coords = list() + while rand_stepper < len(resulting_sequence): + curr_state = resulting_sequence[rand_stepper] + curr_state_name = "State_" + str(curr_state) + curr_pow_func = pow_function_dict[curr_state_name] + curr_dur_func = dur_function_dict[curr_state_name] + for num_param, name in enumerate(param_names): + replace_string = "parameter(" + name + ")" + curr_pow_func = curr_pow_func.replace(replace_string, str(rand_param[num_param])) + curr_dur_func = curr_dur_func.replace(replace_string, str(rand_param[num_param])) + pow = eval(curr_pow_func) + dur = eval(curr_dur_func) + next_time = time + dur + start_coord = (time, pow) + end_coord = (next_time, pow) + resulting_coords.append(start_coord) + resulting_coords.append(end_coord) + rand_stepper = rand_stepper + 1 + time = next_time + + with open("res_conf_" + str(num_fig) + "_signal.txt", 'w') as f: + f.write("x,y\n") + for x, y in enumerate(rand_signal): + f.write(str(x) + "," + str(y) + "\n") + with open("res_conf_" + str(num_fig) + "_fit.txt", 'w') as f: + f.write("x,y\n") + for x, y in resulting_coords: + f.write(str(x) + "," + str(y) + "\n") + plt.plot(rand_signal) + plt.plot([x for x, y in resulting_coords], [y for x, y in resulting_coords]) + plt.savefig("res_conf_" + str(num_fig) + "_pic.pdf", format='pdf', dpi=300) + plt.clf() |