summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rwxr-xr-xbin/analyze-archive.py45
-rwxr-xr-xbin/analyze-timing.py30
-rwxr-xr-xbin/analyze.py40
3 files changed, 50 insertions, 65 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index 787510d..8470ab6 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -83,13 +83,14 @@ import plotter
import re
import sys
from dfatool import PTAModel, RawData, pta_trace_to_aggregate
-from dfatool import soft_cast_int, is_numeric, gplearn_to_function
+from dfatool import gplearn_to_function
from dfatool import CrossValidator
from utils import filter_aggregate_by_param
from automata import PTA
opts = {}
+
def print_model_quality(results):
for state_or_tran in results.keys():
print()
@@ -101,12 +102,14 @@ def print_model_quality(results):
print('{:20s} {:15s} {:.0f}'.format(
state_or_tran, key, result['mae']))
+
def format_quality_measures(result):
if 'smape' in result:
return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
return '{:6} {:9.0f}'.format('', result['mae'])
+
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0]['by_name'].keys():
for key in result_lists[0]['by_name'][state_or_tran].keys():
@@ -114,13 +117,14 @@ def model_quality_table(result_lists, info_list):
for i, results in enumerate(result_lists):
info = info_list[i]
buf += ' ||| '
- if info == None or info(state_or_tran, key):
+ if info is None or info(state_or_tran, key):
result = results['by_name'][state_or_tran][key]
buf += format_quality_measures(result)
else:
buf += '{:6}----{:9}'.format('', '')
print(buf)
+
def model_summary_table(result_list):
buf = 'transition duration'
for results in result_list:
@@ -171,6 +175,7 @@ def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
for arg_index in range(model._num_args[state_or_tran]):
print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+
def print_html_model_data(model, pm, pq, lm, lq, am, ai, aq):
state_attributes = model.attributes(model.states()[0])
@@ -204,6 +209,7 @@ def print_html_model_data(model, pm, pq, lm, lq, am, ai, aq):
print('</tr>')
print('</table>')
+
if __name__ == '__main__':
ignored_trace_indexes = []
@@ -282,10 +288,10 @@ if __name__ == '__main__':
filter_aggregate_by_param(by_name, parameters, opts['filter-param'])
model = PTAModel(by_name, parameters, arg_count,
- traces = preprocessed_data,
- discard_outliers = discard_outliers,
- function_override = function_override,
- pta = pta)
+ traces=preprocessed_data,
+ discard_outliers=discard_outliers,
+ function_override=function_override,
+ pta=pta)
if xv_method:
xv = CrossValidator(PTAModel, by_name, parameters, arg_count)
@@ -299,8 +305,8 @@ if __name__ == '__main__':
if 'plot-unparam' in opts:
for kv in opts['plot-unparam'].split(';'):
state_or_trans, attribute, ylabel = kv.split(':')
- fname = 'param_y_{}_{}.pdf'.format(state_or_trans,attribute)
- plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel = 'measurement #', ylabel = ylabel, output = fname)
+ fname = 'param_y_{}_{}.pdf'.format(state_or_trans, attribute)
+ plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel='measurement #', ylabel=ylabel, output=fname)
if len(show_models):
print('--- simple static model ---')
@@ -361,7 +367,7 @@ if __name__ == '__main__':
if len(show_models):
print('--- param model ---')
- param_model, param_info = model.get_fitted(safe_functions_enabled = safe_functions_enabled)
+ param_model, param_info = model.get_fitted(safe_functions_enabled=safe_functions_enabled)
if 'paramdetection' in show_models or 'all' in show_models:
for state in model.states_and_transitions():
@@ -377,7 +383,7 @@ if __name__ == '__main__':
print('{:10s} {:10s} {:10s} stddev {:f}'.format(
state, attribute, param, model.stats.stats[state][attribute]['std_by_param'][param]
))
- if info != None:
+ if info is not None:
for param_name in sorted(info['fit_result'].keys(), key=str):
param_fit = info['fit_result'][param_name]['results']
for function_type in sorted(param_fit.keys()):
@@ -413,10 +419,20 @@ if __name__ == '__main__':
if 'table' in show_quality or 'all' in show_quality:
model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
+
if 'overall' in show_quality or 'all' in show_quality:
- print('overall MAE of static model: {} µW'.format(model.assess_states(static_model)))
- print('overall MAE of param model: {} µW'.format(model.assess_states(param_model)))
- print('overall MAE of LUT model: {} µW'.format(model.assess_states(lut_model)))
+ print('overall static/param/lut MAE assuming equal state distribution:')
+ print(' {:6.1f} / {:6.1f} / {:6.1f} µW'.format(
+ model.assess_states(static_model),
+ model.assess_states(param_model),
+ model.assess_states(lut_model)))
+ print('overall static/param/lut MAE assuming 95% STANDBY1:')
+ distrib = {'STANDBY1': 0.95, 'POWERDOWN': 0.03, 'TX': 0.01, 'RX': 0.01}
+ print(' {:6.1f} / {:6.1f} / {:6.1f} µW'.format(
+ model.assess_states(static_model, distribution=distrib),
+ model.assess_states(param_model, distribution=distrib),
+ model.assess_states(lut_model, distribution=distrib)))
+
if 'summary' in show_quality or 'all' in show_quality:
model_summary_table([model.assess_on_traces(static_model), model.assess_on_traces(param_model), model.assess_on_traces(lut_model)])
@@ -435,7 +451,6 @@ if __name__ == '__main__':
sys.exit(1)
json_model = model.to_json()
with open(opts['export-energymodel'], 'w') as f:
- json.dump(json_model, f, indent = 2, sort_keys = True)
-
+ json.dump(json_model, f, indent=2, sort_keys=True)
sys.exit(0)
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index 6c84a67..9a3aa41 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -79,14 +79,14 @@ import plotter
import re
import sys
from dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate
-from dfatool import soft_cast_int, is_numeric, gplearn_to_function
+from dfatool import gplearn_to_function
from dfatool import CrossValidator
from utils import filter_aggregate_by_param
from parameters import prune_dependent_parameters
-import utils
opts = {}
+
def print_model_quality(results):
for state_or_tran in results.keys():
print()
@@ -98,12 +98,14 @@ def print_model_quality(results):
print('{:20s} {:15s} {:.0f}'.format(
state_or_tran, key, result['mae']))
+
def format_quality_measures(result):
if 'smape' in result:
return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
return '{:6} {:9.0f}'.format('', result['mae'])
+
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0]['by_name'].keys():
for key in result_lists[0]['by_name'][state_or_tran].keys():
@@ -111,7 +113,7 @@ def model_quality_table(result_lists, info_list):
for i, results in enumerate(result_lists):
info = info_list[i]
buf += ' ||| '
- if info == None or info(state_or_tran, key):
+ if info is None or info(state_or_tran, key):
result = results['by_name'][state_or_tran][key]
buf += format_quality_measures(result)
else:
@@ -136,6 +138,7 @@ def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
for arg_index in range(model._num_args[state_or_tran]):
print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+
if __name__ == '__main__':
ignored_trace_indexes = []
@@ -215,7 +218,7 @@ if __name__ == '__main__':
filter_aggregate_by_param(by_name, parameters, opts['filter-param'])
- model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef = opts['corrcoef'], function_override = function_override)
+ model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef=opts['corrcoef'], function_override=function_override)
if xv_method:
xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
@@ -229,8 +232,8 @@ if __name__ == '__main__':
if 'plot-unparam' in opts:
for kv in opts['plot-unparam'].split(';'):
state_or_trans, attribute, ylabel = kv.split(':')
- fname = 'param_y_{}_{}.pdf'.format(state_or_trans,attribute)
- plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel = 'measurement #', ylabel = ylabel)
+ fname = 'param_y_{}_{}.pdf'.format(state_or_trans, attribute)
+ plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel='measurement #', ylabel=ylabel)
if len(show_models):
print('--- simple static model ---')
@@ -247,6 +250,15 @@ if __name__ == '__main__':
print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(trans, 'duration', param))))
for param_dict in model.stats.codependent_parameter_value_dicts(trans, 'duration', param):
print('{:24s} parameter-aware for {}'.format('', param_dict))
+ # import numpy as np
+ # safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
+ # ratio_by_value = safe_div(model.stats.stats['write']['duration']['lut_by_param_values']['max_retry_count'], model.stats.stats['write']['duration']['std_by_param_values']['max_retry_count'])
+ # err_mode = np.seterr('warn')
+ # dep_by_value = ratio_by_value > 0.5
+ # np.seterr(**err_mode)
+ # Eigentlich sollte hier ein paar mal True stehen, ist aber nicht so...
+ # und warum ist da eine non-power-of-two Zahl von True-Einträgen in der Matrix? 3 stück ist komisch...
+ # print(dep_by_value)
if xv_method == 'montecarlo':
static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
@@ -265,7 +277,7 @@ if __name__ == '__main__':
if len(show_models):
print('--- param model ---')
- param_model, param_info = model.get_fitted(safe_functions_enabled = safe_functions_enabled)
+ param_model, param_info = model.get_fitted(safe_functions_enabled=safe_functions_enabled)
if 'paramdetection' in show_models or 'all' in show_models:
for transition in model.names:
@@ -289,7 +301,7 @@ if __name__ == '__main__':
))
print('{:10s} {:10s} dependence on arg{:d}: {:.2f}'.format(
transition, attribute, i, model.stats.arg_dependence_ratio(transition, attribute, i)))
- if info != None:
+ if info is not None:
for param_name in sorted(info['fit_result'].keys(), key=str):
param_fit = info['fit_result'][param_name]['results']
for function_type in sorted(param_fit.keys()):
@@ -325,6 +337,4 @@ if __name__ == '__main__':
function = None
plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
-
-
sys.exit(0)
diff --git a/bin/analyze.py b/bin/analyze.py
deleted file mode 100755
index 57803fe..0000000
--- a/bin/analyze.py
+++ /dev/null
@@ -1,40 +0,0 @@
-#!/usr/bin/env python3
-
-import json
-import numpy as np
-import os
-from scipy.cluster.vq import kmeans2
-import struct
-import sys
-import tarfile
-from dfatool import running_mean, MIMOSA
-
-voltage = float(sys.argv[1])
-shunt = float(sys.argv[2])
-filename = sys.argv[3]
-
-mim = MIMOSA(voltage, shunt)
-
-charges, triggers = mim.load_data(filename)
-trigidx = mim.trigger_edges(triggers)
-triggers = []
-cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10))
-calfunc, caldata = mim.calibration_function(charges, cal_edges)
-vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
-
-json_out = {
- 'triggers' : len(trigidx),
- 'first_trig' : trigidx[0] * 10,
- 'calibration' : caldata,
- 'trace' : mim.analyze_states(charges, trigidx, vcalfunc)
-}
-
-basename, _ = os.path.splitext(filename)
-
-# TODO also look for interesting gradients inside each state
-
-with open(basename + ".json", "w") as f:
- json.dump(json_out, f)
- f.close()
-
-#print(kmeans2(charges[:firstidx], np.array([130 * ua_step, 3.6 / 987 * 1000000, 3.6 / 99300 * 1000000])))