summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py64
1 files changed, 32 insertions, 32 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index ac32d88..cba7009 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -547,7 +547,7 @@ if __name__ == '__main__':
except getopt.GetoptError as err:
print(err, file=sys.stderr)
sys.exit(-1)
-
+ filepath = os.path.dirname(opt_filename)
# OPENING DATA
if ".json" in opt_filename:
# open file with trace data from json
@@ -1034,37 +1034,37 @@ if __name__ == '__main__':
print_warning("Fitting(duration) for state " + state_name + " was not succesful!")
new_fit_res_pow_dict[state_name] = combined_fit_power
new_fit_res_dur_dict[state_name] = combined_fit_duration
- for state_name in new_by_name.keys():
- model_function = str(new_fit_res_pow_dict[state_name].model_function)
- model_args = new_fit_res_pow_dict[state_name].model_args
- for num_arg, arg in enumerate(model_args):
- replace_string = "regression_arg(" + str(num_arg) + ")"
- model_function = model_function.replace(replace_string, str(arg))
- print("Power-Function for state " + state_name + ": "
- + model_function)
- for state_name in new_by_name.keys():
- model_function = str(new_fit_res_dur_dict[state_name].model_function)
- model_args = new_fit_res_dur_dict[state_name].model_args
- for num_arg, arg in enumerate(model_args):
- replace_string = "regression_arg(" + str(num_arg) + ")"
- model_function = model_function.replace(replace_string, str(arg))
- print("Duration-Function for state " + state_name + ": "
- + model_function)
- # model = PTAModel(new_by_name, param_names, dict())
- # model_json = model.to_json()
- # param_model, _ = model.get_fitted()
- # param_quality = model.assess(param_model)
- # pprint.pprint(param_quality)
- # # model = PTAModel(by_name, ...)
- # # validator = CrossValidator(PTAModel, by_name, ...)
- # # param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10)
- # validator = CrossValidator(PTAModel, new_by_name, param_names, dict())
- # param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10)
- # pprint.pprint(param_quality)
- if not_accurate:
- print_warning(
- "THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"
- " WHY.")
+ result_loc = os.path.join(filepath, "result.txt")
+ with open(result_loc, "w") as f:
+ f.write("Resulting Sequence: " + str(resulting_sequence))
+ f.write("\n\n")
+ for state_name in new_by_name.keys():
+ model_function = str(new_fit_res_pow_dict[state_name].model_function)
+ model_args = new_fit_res_pow_dict[state_name].model_args
+ for num_arg, arg in enumerate(model_args):
+ replace_string = "regression_arg(" + str(num_arg) + ")"
+ model_function = model_function.replace(replace_string, str(arg))
+ print("Power-Function for state " + state_name + ": "
+ + model_function)
+ f.write("Power-Function for state " + state_name + ": "
+ + model_function + "\n")
+ f.write("\n\n")
+ for state_name in new_by_name.keys():
+ model_function = str(new_fit_res_dur_dict[state_name].model_function)
+ model_args = new_fit_res_dur_dict[state_name].model_args
+ for num_arg, arg in enumerate(model_args):
+ replace_string = "regression_arg(" + str(num_arg) + ")"
+ model_function = model_function.replace(replace_string, str(arg))
+ print("Duration-Function for state " + state_name + ": "
+ + model_function)
+ f.write("Duration-Function for state " + state_name + ": "
+ + model_function + "\n")
+ if not_accurate:
+ print_warning(
+ "THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"
+ " WHY.")
+ f.write("THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"
+ " WHY.")
# TODO: removed clustering (temporarily), since it provided too much dificultys